New capabilities in wireless network security have been enabled by deep learning that leverages and exploits signal patterns and characteristics in Radio Frequency (RF) data captured by radio receivers to identify and authenticate radio transmitters. Open-set detection is an area of deep learning that aims to identify RF data samples captured from new devices during deployment (aka inference) that were not part of the training set; i.e. devices that were unseen during training. Past work in open-set detection has mostly been applied to independent and identically distributed data such as images. In contrast, RF signal data present a unique set of challenges as the data forms a time series with non-linear time dependencies among the samples. In this paper, we introduce a novel open-set detection approach for RF data-driven device identification that extracts its neural network features from patterns of the hidden state values within a Convolutional Neural Network Long Short-Term Memory (CNN+LSTM) model. Experimental results obtained using real datasets collected from 15 IoT devices, each enabled with LoRa, wireless-Wi-Fi, and wired-Wi-Fi communication protocols, show that our new approach greatly improves the area under the precision-recall curve, and hence, can be used successfully to monitor and control unauthorized network access of wireless devices.
more » « less- Award ID(s):
- 2003273
- PAR ID:
- 10512355
- Publisher / Repository:
- ITU
- Date Published:
- Journal Name:
- ITU Journal on Future and Evolving Technologies
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2616-8375
- Page Range / eLocation ID:
- 134 to 146
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
In this paper, we introduce a neural network (NN)-based symbol detection scheme for Wi-Fi systems and its associated hardware implementation in software radios. To be specific, reservoir computing (RC), a special type of recurrent neural network (RNN), is adopted to conduct the task of symbol detection for Wi-Fi receivers. Instead of introducing extra training overhead/set to facilitate the RC-based symbol detection, a new training framework is introduced to take advantage of the signal structure in existing Wi-Fi protocols (e.g., IEEE 802.11 standards), that is, the introduced RC-based symbol detector will utilize the inherent long/short training sequences and structured pilots sent by the Wi-Fi transmitter to conduct online learning of the transmit symbols. In other words, our introduced NN-based symbol detector does not require any additional training sets compared to existing Wi-Fi systems. The introduced RC-based Wi-Fi symbol detector is implemented on the software-defined radio (SDR) platform to further provide realistic and meaningful performance comparisons against the traditional Wi-Fi receiver. Over the air, experiment results show that the introduced RC based Wi-Fi symbol detector outperforms conventional Wi-Fi symbol detection methods in various environments indicating the significance and the relevance of our work.more » « less
-
5G and open radio access networks (Open RANs) will result in vendor-neutral hardware deployment that will require additional diligence towards managing security risks. This new paradigm will allow the same network infrastructure to support virtual network slices for transmit different waveforms, such as 5G New Radio, LTE, WiFi, at different times. In this multi- vendor, multi-protocol/waveform setting, we propose an additional physical layer authentication method that detects a specific emitter through a technique called as RF fingerprinting. Our deep learning approach uses convolutional neural networks augmented with triplet loss, where examples of similar/dissimilar signal samples are shown to the classifier over the training duration. We demonstrate the feasibility of RF fingerprinting base stations over the large-scale over-the-air experimental POWDER platform in Salt Lake City, Utah, USA. Using real world datasets, we show how our approach overcomes the challenges posed by changing channel conditions and protocol choices with 99.86% detection accuracy for different training and testing days.more » « less
-
null (Ed.)Most prior works on deep learning-based wireless device classification using radio frequency (RF) data apply off-the-shelf deep neural network (DNN) models, which were matured mainly for domains like vision and language. However, wireless RF data possesses unique characteristics that differentiate it from these other domains. For instance, RF data encompasses intermingled time and frequency features that are dictated by the underlying hardware and protocol configurations. In addition, wireless RF communication signals exhibit cyclostationarity due to repeated patterns (PHY pilots, frame prefixes, and so on) that these signals inherently contain. In this article, we begin by explaining and showing the unsuitability as well as limitations of existing DNN feature design approaches currently proposed to be used for wireless device classification. We then present novel feature design approaches that exploit the distinct structures of RF communication signals and the spectrum emissions caused by transmitter hardware impairments to custom-make DNN models suitable for classifying wireless devices using RF signal data. Our proposed DNN feature designs substantially improve classification robustness in terms of scalability, accuracy, signature anti-cloning, and insensitivity to environment perturbations. We end the article by presenting other feature design strategies that have great potential for providing further performance improvements of the DNN-based wireless device classification, and discuss the open research challenges related to these proposed strategies.more » « less
-
Markopoulos, Panos P. ; Ouyang, Bing (Ed.)We consider the problem of unsupervised (blind) evaluation and assessment of the quality of data used for deep neural network (DNN) RF signal classification. When neural networks train on noisy or mislabeled data, they often (over-)fit to the noise measurements and faulty labels, which leads to significant performance degradation. Also, DNNs are vulnerable to adversarial attacks, which can considerably reduce their classification performance, with extremely small perturbations of their input. In this paper, we consider a new method based on L1-norm principal-component analysis (PCA) to improve the quality of labeled wireless data sets that are used for training a convolutional neural network (CNN), and a deep residual network (ResNet) for RF signal classification. Experiments with data generated for eleven classes of digital and analog modulated signals show that L1-norm tensor conformity curation of the data identifies and removes from the training data set inappropriate class instances that appear due to mislabeling and universal black-box adversarial attacks and drastically improves/restores the classification accuracy of the identified deep neural network architectures.more » « less
-
Circumvent traffic shaping using virtual wireless clients in IEEE 802.11 wireless local area networkAccessing the Internet through Wi-Fi networks offers an inexpensive alternative for offloading data from mobile broadband connections. Businesses such as fast food restaurants, coffee shops, hotels, and airports, provide complimentary Internet access to their customers through Wi-Fi networks. Clients can connect to the Wi-Fi hotspot using different wireless devices. However, network administrators may apply traffic shaping to control the wireless client's upload and download data rates. Such limitation is used to avoid overloading the hotspot, thus providing fair bandwidth allocation. Also, it allows for the collection of money from the client in order to have access to a faster Internet service. In this paper, we present a new technique to avoid bandwidth limitation imposed by Wi-Fi hotspots. The proposed method creates multiple virtual wireless clients using only one physical wireless interface card. Each virtual wireless client emulates a standalone wireless device. The combination of the individual bandwidth of each virtual wireless client results in an increase of the total bandwidth gained by the attacker. Our proposed technique was implemented and evaluated in a real-life environment with an increase in data rate up to 16 folds.more » « less