ABSTRACT Cluster spiral galaxies suffer catastrophic losses of the cool, neutral gas component of their interstellar medium due to ram pressure stripping, contributing to the observed quenching of star formation in the disc compared to galaxies in lower density environments. However, the short-term effects of ram pressure on the star formation rate and active galactic nucleus (AGN) activity of galaxies undergoing stripping remain unclear. Numerical studies have recently demonstrated cosmic rays can dramatically influence galaxy evolution for isolated galaxies, yet their influence on ram pressure stripping remains poorly constrained. We perform the first cosmic ray magnetohydrodynamic simulations of an L* galaxy undergoing ram pressure stripping, including radiative cooling, self-gravity of the gas, star formation, and stellar feedback. We find the microscopic transport of cosmic rays plays a key role in modulating the star formation enhancement experienced by spirals at the outskirts of clusters compared to isolated spirals. Moreover, we find that galaxies undergoing ram pressure stripping exhibit enhanced gas accretion on to their centres, which may explain the prevalence of AGNs in these objects. In agreement with observations, we find cosmic rays significantly boost the global radio emission of cluster spirals. Although the gas removal rate is relatively insensitive to cosmic ray physics, we find that cosmic rays significantly modify the phase distribution of the remaining gas disc. These results suggest observations of galaxies undergoing ram pressure stripping may place novel constraints on cosmic ray calorimetry and transport.
more »
« less
The effect of cosmic web filaments on galaxy properties in the RESOLVE and ECO surveys
ABSTRACT Galaxy environment plays an important role in driving the transformation of galaxies from blue and star forming to red and quenched. Recent works have focused on the role of cosmic web filaments in galaxy evolution and have suggested that stellar mass segregation, quenching of star formation, and gas-stripping may occur within filaments. We study the relationship between distance to filament and the stellar mass, colour, and H i gas content of galaxies using data from the REsolved Spectroscopy of a Local VolumE survey and Environmental COntext (ECO) catalogue, two overlapping census-style, volume-complete surveys. We use the Discrete Persistence Structures Extractor to identify cosmic web filaments over the full ECO area. We find that galaxies close to filaments have higher stellar masses, in agreement with previous results. Controlling for stellar mass, we find that galaxies also have redder colours and are more gas poor closer to filaments. When accounting for group membership and halo mass, we find that these trends in colour and gas content are dominated by the increasing prevalence of galaxy group environments close to filaments, particularly for high-halo mass and low-stellar mass galaxies. Filaments have an additional small effect on the gas content of galaxies in low-mass haloes, possibly due to cosmic web stripping.
more »
« less
- PAR ID:
- 10490232
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 528
- Issue:
- 3
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 4139-4159
- Size(s):
- p. 4139-4159
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Field dwarf galaxies not actively forming stars are relatively rare in the local Universe, but are present in cosmological hydrodynamical simulations. We use the TNG50 simulation to investigate their origin and find that they all result from environmental effects that have removed or reduced their gas content. Quenched field dwarfs consist of either backsplash objects ejected from a massive host or of systems that have lost their gas after crossing overdense regions such as filaments or sheets (“cosmic web stripping”). Quenched fractions rise steeply with decreasing stellar mass, with quenched systems making up roughly ∼15% of all field dwarfs (i.e., excluding satellites) with stellar masses 107 < M⋆/M⊙ < 109. This fraction drops to only ∼1% when a strict isolation criterion that requires no neighbors withM⋆ > 109M⊙within 1.5 Mpc is applied. Of these isolated dwarfs, ∼6% are backsplash, while the other ∼94% have been affected by the cosmic web. Backsplash systems are more deficient in dark matter, have retained less or no gas, and have stopped forming stars earlier than cosmic web-stripped systems. The discovery of deeply isolated dwarf galaxies that were quenched relatively recently would lend observational support to the prediction that the cosmic web is capable of inducing the cessation of star formation in dwarfs.more » « less
-
It is now well established that galaxies have different morphologies, gas contents, and star formation rates (SFR) in dense environments like galaxy clusters. The impact of environmental density extends to several virial radii, and galaxies appear to be pre-processed in filaments and groups before falling into the cluster. Our goal is to quantify this pre-processing in terms of gas content and SFR, as a function of density in cosmic filaments. We have observed the two first CO transitions in 163 galaxies with the IRAM-30 m telescope, and added 82 more measurements from the literature, thus forming a sample of 245 galaxies in the filaments around the Virgo cluster. We gathered HI-21cm measurements from the literature and observed 69 galaxies with the Nançay telescope to complete our sample. We compare our filament galaxies with comparable samples from the Virgo cluster and with the isolated galaxies of the AMIGA sample. We find a clear progression from field galaxies to filament and cluster galaxies for decreasing SFR, increasing fraction of galaxies in the quenching phase, an increasing proportion of early-type galaxies, and decreasing gas content. Galaxies in the quenching phase, defined as having a SFR below one-third of that of the main sequence (MS), are only between 0% and 20% in the isolated sample, according to local galaxy density, while they are 20%–60% in the filaments and 30%–80% in the Virgo cluster. Processes that lead to star formation quenching are already at play in filaments; they depend mostly on the local galaxy density, while the distance to the filament spine is a secondary parameter. While the HI-to-stellar-mass ratio decreases with local density by an order of magnitude in the filaments, and two orders of magnitude in the Virgo cluster with respect to the field, the decrease is much less for the H 2 -to-stellar-mass ratio. As the environmental density increases, the gas depletion time decreases, because the gas content decreases faster than the SFR. This suggests that gas depletion precedes star formation quenching.more » « less
-
Context.We identified and analysed massive quiescent galaxies (MQGs) atz ≈ 3.1 within the 2 deg2COSMOS field and explored the effect of the galaxy environment on quenching processes. By examining the variation in the quenched fraction and physical properties of these galaxies in different environmental contexts, including local densities, protoclusters, and cosmic filaments, we investigated the connection between environmental factors and galaxy quenching at cosmic noon. Aims.We selected MQGs atz ≈ 3.1 using deep photometric data from the COSMOS2020 catalogue combined with narrow-band-selected Lyman-αemitters (LAEs) from the One-hundred-square-degree DECam Imaging in Narrowbands (ODIN) survey. We performed a spectral energy distribution fitting using the code BAGPIPES to derive the star formation histories and quenching timescales. We constructed Voronoi-tessellation density maps using LAEs, and we independently selected galaxies photometrically to characterize the galaxy environments. Methods.We identified 24 MQGs atz ≈ 3.1, each of which has a stellar mass higher than 1010.6 M⊙. These MQGs share remarkably uniform star-formation histories, with intense starburst phases followed by rapid quenching within short timescales (≤400 Myr). The consistency of these quenching timescales suggests a universal and highly efficient quenching mechanism in this epoch. We found no significant correlation between environmental density (either local or large scale) and galaxy quenching parameters such as the quenching duration, the quenched fraction, or the timing. MQGs show no preferential distribution with respect to protoclusters or filaments compared to massive star-forming galaxies. Some MQGs reside close to gas-rich filaments, but show no evidence of rejuvenated star formation. This implies gas-heating mechanisms and not gas exhaustion. These results indicate that the quenching processes atz ≈ 3.1 likely depend little on the immediate galaxy environment. Results.Our findings suggest that environmental processes alone, such as galaxy mergers, interactions, or gas stripping, cannot fully explain the galaxy quenching atz ≈ 3.1. Internal mechanisms such as feedback from AGN, stellar feedback, virial shock heating, or morphological quenching instead play an important role in quenching. Future spectroscopic observations must confirm the quiescent nature and precise redshifts of these galaxies. Observational studies of gas dynamics, gas temperature, and ionisation conditions within and around MQGs will also clarify the physical mechanisms driving galaxy quenching during this critical epoch of galaxy evolution.more » « less
-
ABSTRACT We introduce a suite of cosmological volume simulations to study the evolution of galaxies as part of the Feedback in Realistic Environments project. FIREbox, the principal simulation of the present suite, provides a representative sample of galaxies (∼1000 galaxies with $$M_{\rm star}\gt 10^8\, M_\odot$$ at z = 0) at a resolution ($$\Delta {}x\sim {}20\, {\rm pc}$$ , $$m_{\rm b}\sim {}6\times {}10^4\, M_\odot$$ ) comparable to state-of-the-art galaxy zoom-in simulations. FIREbox captures the multiphase nature of the interstellar medium in a fully cosmological setting (L = 22.1 Mpc) thanks to its exceptionally high dynamic range (≳106) and the inclusion of multichannel stellar feedback. Here, we focus on validating the simulation predictions by comparing to observational data. We find that star formation rates, gas masses, and metallicities of simulated galaxies with $$M_{\rm star}\lt 10^{10.5-11}\, M_\odot$$ broadly agree with observations. These galaxy scaling relations extend to low masses ($$M_{\rm star}\sim {}10^7\, M_\odot$$ ) and follow a (broken) power-law relationship. Also reproduced are the evolution of the cosmic HI density and the HI column density distribution at z ∼ 0–5. At low z , FIREbox predicts a peak in the stellar-mass–halo-mass relation but also a higher abundance of massive galaxies and a higher cosmic star formation rate density than observed, showing that stellar feedback alone is insufficient to reproduce the properties of massive galaxies at late times. Given its high resolution and sample size, FIREbox offers a baseline prediction of galaxy formation theory in a ΛCDM Universe while also highlighting modelling challenges to be addressed in next-generation galaxy simulations.more » « less
An official website of the United States government
