skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Antigenic cooperation in viral populations: Transformation of functions of intra-host viral variants
Award ID(s):
2047828 2415564
PAR ID:
10490254
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Theoretical Biology
Volume:
580
Issue:
C
ISSN:
0022-5193
Page Range / eLocation ID:
111719
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Although traditionally viewed as streamlined and simple, discoveries over the last century have revealed that viruses can exhibit surprisingly complex physical structures, genomic organization, ecological interactions, and evolutionary histories. Viruses can have physical dimensions and genome lengths that exceed many cellular lineages, and their infection strategies can involve a remarkable level of physiological remodeling of their host cells. Virus–virus communication and widespread forms of hyperparasitism have been shown to be common in the virosphere, demonstrating that dynamic ecological interactions often shape their success. And the evolutionary histories of viruses are often fraught with complexities, with chimeric genomes including genes derived from numerous distinct sources or evolved de novo. Here we will discuss many aspects of this viral complexity, with particular emphasis on large DNA viruses, and provide an outlook for future research. 
    more » « less
  3. null (Ed.)
    Unraveling the mechanisms of packing of DNA inside viral capsids is of fundamental importance to understanding the spread of viruses. It could also help develop new applications to targeted drug delivery devices for a large range of therapies. In this article, we present a robust, predictive mathematical model and its numerical implementation to aid the study and design of bacteriophage viruses for application purposes. Exploiting the analogies between the columnar hexagonal chromonic phases of encapsidated viral DNA and chromonic aggregates formed by plank-shaped molecular compounds, we develop a first-principles effective mechanical model of DNA packing in a viral capsid. The proposed expression of the packing energy, which combines relevant aspects of the liquid crystal theory, is developed from the model of hexagonal columnar phases, together with that describing configurations of polymeric liquid crystals. The method also outlines a parameter selection strategy that uses available data for a collection of viruses, aimed at applications to viral design. The outcome of the work is a mathematical model and its numerical algorithm, based on the method of finite elements, and computer simulations to identify and label the ordered and disordered regions of the capsid and calculate the inner pressure. It also presents the tools for the local reconstruction of the DNA “scaffolding” and the center curve of the filament within the capsid. 
    more » « less