A major earthquake ruptured the Cascadia subduction zone (CSZ) on 26 January 1700. Key paleoseismic evidence associated with this event include tsunami deposits, stratigraphic evidence of coastal coseismic subsidence, written Japanese records of a tsunami unaccompanied by earthquake shaking, and margin‐wide turbidites found offshore and in lacustrine environments. Despite this wealth of independent clues, important details about this event remain unresolved. Dating uncertainties do not conclusively establish whether the proxies are from one earthquake or a sequence of them, and we have limited knowledge of the likely slip distributions of the event or events. Here, we use a catalog of 37,500 candidate synthetic ruptures between 7.8 and 9.2 and simulate their resulting coseismic deformation and tsunami inundation. Each model is then compared against estimated Japan tsunami arrivals, regional coastal subsidence records, and local paleotsunami deposits mapped at six different coastal marshes and one coastal lake along the CSZ. We find that seven full‐margin ruptures with a median magnitude of 9.1 satisfy all three constraints. We favor one 9.11 model that best matches all site paleoseismic observations and suggests that the Cascadia megathrust slipped up to ∼30 m and must have shallow geodetic coupling. We also find that some sequences composed of three or four ruptures can still satisfy the observations, yet no sequences of two ruptures can. Sequences are differentiated into three groups based on whether they contain a mainshock rupture located in the south (>44° N) or further north. All sequences contain unruptured portions of the megathrust and most contain mainshocks with peak slip above 40 m. The fit of the geologic evidence from sequences is poor in comparison to single‐event models. Therefore, sequences are generally less favored compared to full‐margin events.
more »
« less
Can Stochastic Slip Rupture Modeling Produce Realistic M 9+ Events?
Abstract Stochastic slip rupture modeling is a computationally efficient, reduced‐physics approximation that has the capability to create large numbers of unique ruptures based only on a few statistical assumptions. Yet one fundamental question pertaining to this approach is whether the slip distributions calculated in this way are “realistic.” Rather, can stochastic modeling reproduce slip distributions that match what is seen inM9+ events recorded in instrumental time? We focus here on testing the ability of the von Karman ACF method for stochastic slip modeling to reproduceM9+ events. We start with the 2011M9.1 Tohoku‐Oki earthquake and tsunami where we test both a stochastic method with a homogeneous background mean model and a method where slip is informed by an additional interseismic coupling constraint. We test two coupling constraints with varying assumptions of either trench‐locking or ‐creeping and assess their influence on the calculated ruptures. We quantify the dissimilarity between the 12,000 modeled ruptures and a slip inversion for the Tohoku earthquake. We also model tsunami inundation for over 300 ruptures and compare the results to an inundation survey along the eastern coastline of Japan. We conclude that stochastic slip modeling produces ruptures that can be considered “Tohoku‐like,” and inclusion of coupling can both positively and negatively influence the ability to create realistic ruptures. We then expand our study to show that for the 1960M9.4–9.6 Chile, 1964M9.2 Alaska, and 2004M9.1–9.3 Sumatra events, stochastic slip modeling has the capability to produce ruptures that compare favorably to those events.
more »
« less
- Award ID(s):
- 1835661
- PAR ID:
- 10490259
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 128
- Issue:
- 3
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT A major earthquake ruptured the Cascadia subduction zone (CSZ) on 26 January 1700. Key paleoseismic evidence associated with this event include tsunami deposits, stratigraphic evidence of coastal coseismic subsidence, written Japanese records of a tsunami unaccompanied by earthquake shaking, and margin-wide turbidites found offshore and in lacustrine environments. Despite this wealth of independent clues, important details about this event remain unresolved. Dating uncertainties do not conclusively establish whether the proxies are from one earthquake or a sequence of them, and we have limited knowledge of the likely slip distributions of the event or events. Here, we use a catalog of 37,500 candidate synthetic ruptures between Mw 7.8 and 9.2 and simulate their resulting coseismic deformation and tsunami inundation. Each model is then compared against estimated Japan tsunami arrivals, regional coastal subsidence records, and local paleotsunami deposits mapped at six different coastal marshes and one coastal lake along the CSZ. We find that seven full-margin ruptures with a median magnitude of Mw 9.1 satisfy all three constraints. We favor one Mw 9.11 model that best matches all site paleoseismic observations and suggests that the Cascadia megathrust slipped up to ∼30 m and must have shallow geodetic coupling. We also find that some sequences composed of three or four ruptures can still satisfy the observations, yet no sequences of two ruptures can. Sequences are differentiated into three groups based on whether they contain a mainshock rupture located in the south (>44° N) or further north. All sequences contain unruptured portions of the megathrust and most contain mainshocks with peak slip above 40 m. The fit of the geologic evidence from sequences is poor in comparison to single-event models. Therefore, sequences are generally less favored compared to full-margin events.more » « less
-
Abstract Extreme slip at shallow depths on subduction zone faults is a primary contributor to tsunami generation by earthquakes. Improving earthquake and tsunami risk assessment requires understanding the material and structural conditions that favor earthquake propagation to the trench. We use new biomarker thermal maturity indicators to identify seismic faults in drill core recovered from the Japan Trench subduction zone, which hosted 50 m of shallow slip during theMw9.1 2011 Tohoku-Oki earthquake. Our results show that multiple faults have hosted earthquakes with displacement ≥ 10 m, and each could have hosted many great earthquakes, illustrating an extensive history of great earthquake seismicity that caused large shallow slip. We find that lithologic contrasts in frictional properties do not necessarily determine the likelihood of large shallow slip or seismic hazard.more » « less
-
Tsunamis generated by seafloor displacements accompanying large submarine earthquakes provide sensitivity to absolute slip position and distribution for offshore faulting analogous to that of geodetic observations for landward faulting. Tsunami recordings at deep‐water and near‐shore ocean bottom pressure sensors and tide gauges, along with runup and inundation measurements, can now be reliably modeled using detailed bathymetric structures and robust numerical codes. As a result, tsunami observations now play an important role in quantifying coseismic slip distributions for large submarine earthquakes in subduction zones and other tectonic environments. Applications of joint modeling or inversion of seismic, geodetic and tsunami observations for recent major earthquakes are described, highlighting the specific contributions of the tsunami observations to source model resolution. Tsunami observations provide unique information on the up‐dip extent of earthquake coseismic slip on subduction zone megathrust faults and occurrence of near‐trench slip, which are usually not well constrained by seismic and land‐based geodetic signals. Tsunami signals also help to detect offshore slow slip that is not evident in seismic or land‐based geodetic data and to balance geophysical constraints on ruptures that extend from on‐shore to off‐shore. Tsunami runup measurements and stratigraphic deposits further provide unique constraints on large earthquake ruptures that occurred prior to modern geophysical instrumentation.more » « less
-
Physics-based dynamic rupture simulations are valuable for assessing the seismic hazard in the Cascadia subduction zone (CSZ), but require assumptions about fault stress and material properties. Geodetic slip deficit models (SDMs) may provide information about the initial stresses governing megathrust earthquake dynamics. We present a unified workflow linking SDMs to 3D dynamic rupture simulations, and 22 rupture scenarios to unravel the dynamic trade-offs of assumptions for SDMs, rigidity, and pore fluid pressure. We find that margin-wide rupture, an earthquake that ruptures the entire length of the plate boundary, requires a large slip deficit in the central CSZ. Comparisons between Gaussian and smoother, shallow-coupled SDMs show significant differences in stress distributions and rupture dynamics. Variations in depth-dependent rigidity cause competing effects, particularly in the near-trench region. Higher overall rigidity can increase fault slip but also result in lower initial shear stresses, inhibiting slip. The state of pore fluid pressure is crucial in balancing SDM-informed initial shear stresses with realistic dynamic rupture processes, especially assuming small recurrence time scaling factors. This study highlights the importance of self-consistent assumptions for rigidity and initial stresses between geodetic, structural, and dynamic rupture models, providing a foundation for future simulations of ground motions and tsunami generation.more » « less
An official website of the United States government

