Variable Stiffness Floating Spring Leg: Performing Net-Zero Energy Cost Tasks Not Achievable Using Fixed Stiffness Springs
- Award ID(s):
- 2144551
- PAR ID:
- 10490348
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Robotics and Automation Letters
- Volume:
- 8
- Issue:
- 9
- ISSN:
- 2377-3774
- Page Range / eLocation ID:
- 5400 to 5407
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Stiffness is a mechanical property of vital importance to any material system and is typically considered a static quantity. Recent work, however, has shown that novel materials with programmable stiffness can enhance the performance and simplify the design of engineered systems, such as morphing wings, robotic grippers, and wearable exoskeletons. For many of these applications, the ability to program stiffness with electrical activation is advantageous because of the natural compatibility with electrical sensing, control, and power networks ubiquitous in autonomous machines and robots. The numerous applications for materials with electrically driven stiffness modulation has driven a rapid increase in the number of publications in this field. Here, a comprehensive review of the available materials that realize electroprogrammable stiffness is provided, showing that all current approaches can be categorized as using electrostatics or electrically activated phase changes, and summarizing the advantages, limitations, and applications of these materials. Finally, a perspective identifies state‐of‐the‐art trends and an outlook of future opportunities for the development and use of materials with electroprogrammable stiffness.more » « less
-
Parallel robots have been primarily investigated as po- tential mechanisms with stiffness modulation capabilities through the use of actuation redundancy to change internal preload. This paper investigates real-time stiffness modula- tion through the combined use of kinematic redundancy and variable stiffness actuators. A known notion of directional stiffness is used to guide the real-time geometric reconfig- uration of a parallel robot and command changes in joint- level stiffness. A weighted gradient-projection redundancy resolution approach is demonstrated for resolving kinematic redundancy while satisfying the desired directional stiffness and avoiding singularity and collision between the legs of a Gough/Stewart parallel robot with movable anchor points at its base and with variable stiffness actuators. A simulation study is carried out to delineate the effects of using kinematic redundancy with or without the use of variable stiffness ac- tuators. In addition, modulation of the entire stiffness matrix is demonstrated as an extension of the approach for modulating directional stiffness.more » « less
An official website of the United States government

