skip to main content

Title: Stiffness modeling of a variable stiffness compliant link
Award ID(s):
Publication Date:
Journal Name:
Mechanism and Machine Theory
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Parallel robots have been primarily investigated as po- tential mechanisms with stiffness modulation capabilities through the use of actuation redundancy to change internal preload. This paper investigates real-time stiffness modula- tion through the combined use of kinematic redundancy and variable stiffness actuators. A known notion of directional stiffness is used to guide the real-time geometric reconfig- uration of a parallel robot and command changes in joint- level stiffness. A weighted gradient-projection redundancy resolution approach is demonstrated for resolving kinematic redundancy while satisfying the desired directional stiffness and avoiding singularity and collision between the legs of a Gough/Stewart parallel robot with movable anchor points at its base and with variable stiffness actuators. A simulation study is carried out to delineate the effects of using kinematic redundancy with or without the use of variable stiffness ac- tuators. In addition, modulation of the entire stiffness matrix is demonstrated as an extension of the approach for modulating directional stiffness.
  2. Cells are known to continuously remodel their local extracellular matrix (ECM) and in a reciprocal way, they can also respond to mechanical and biochemical properties of their fibrous environment. In this study, we measured how stiffness around dermal fibroblasts (DFs) and human fibrosarcoma HT1080 cells differs with concentration of rat tail type 1 collagen (T1C) and type of ECM. Peri-cellular stiffness was probed in four directions using multi-axes optical tweezers active microrheology (AMR). First, we found that neither cell type significantly altered local stiffness landscape at different concentrations of T1C. Next, rat tail T1C, bovine skin T1C and fibrin cell-free hydrogels were polymerized at concentrations formulated to match median stiffness value. Each of these hydrogels exhibited distinct fiber architecture. Stiffness landscape and fibronectin secretion, but not nuclear/cytoplasmic YAP ratio differed with ECM type. Further, cell response to Y27632 or BB94 treatments, inhibiting cell contractility and activity of matrix metalloproteinases, respectively, was also dependent on ECM type. Given differential effect of tested ECMs on peri-cellular stiffness landscape, treatment effect and cell properties, this study underscores the need for peri-cellular and not bulk stiffness measurements in studies on cellular mechanotransduction.
  3. Inflated continuum robots are promising for a variety of navigation tasks, but controlling their motion with a small number of actuators is challenging. These inflated beam robots tend to buckle under compressive loads, producing extremely tight local curvature at difficult-to-control buckle point locations. In this paper, we present an inflated beam robot that uses distributed stiffness changing sections enabled by positive pressure layer jamming to control or prevent buckling. Passive valves are actuated by an electromagnet carried by an electromechanical device that travels inside the main inflated beam robot body. The valves themselves require no external connections or wiring, allowing the distributed stiffness control to be scaled to long beam lengths. Multiple layer jamming elements are stiffened simultaneously to achieve global stiffening, allowing the robot to support greater cantilevered loads and longer unsupported lengths. Local stiffening, achieved by leaving certain layer jamming elements unstiffened, allows the robot to produce "virtual joints" that dynamically change the robot kinematics. Implementing these stiffening strategies is compatible with growth through tip eversion and tendon steering, and enables a number of new capabilities for inflated beam robots and tip-everting robots.