skip to main content


This content will become publicly available on February 1, 2025

Title: Combining STEREO heliospheric imagers and Solar Orbiter to investigate the evolution of the 2022 March 10 CME

Context.Coronal mass ejections (CMEs) are large-scale structures of magnetized plasma that erupt from the corona into interplanetary space. The launch of Solar Orbiter (SolO) in 2020 enables in situ measurements of CMEs in the innermost heliosphere, at such distances where CMEs can be observed remotely within the inner field of view of heliospheric imagers (HIs). It thus provides the opportunity for investigations into the correspondence of the CME substructures measured in situ and observed remotely. We studied a CME that started on 2022 March 10 and was measured in situ by SolO at ∼0.44 au.

Aims.Combining remote observations of CMEs from wide-angle imagers and in situ measurements in the innermost heliosphere allows us to compare CME properties derived through both techniques, validate the estimates, and better understand CME evolution, specifically the size and radial expansion, within 0.5 au.

Methods.We compared the evolution of different CME substructures observed in images from the HIs on board the Ahead Solar Terrestrial Relations Observatory (STEREO-A) and the CME signatures measured in situ by SolO. The CME is found to possess a density enhancement at its rear edge in both remote and in situ observations, which validates the use of the signature of density enhancement following the CMEs to accurately identify the CME rear edge. We also estimated and compared the radial size and radial expansion speed of different substructures in both observations.

Results.The evolution of the CME front and rear edges in remote images is consistent with the in situ CME measurements. The radial expansion (i.e., radial size and radial expansion speed) of the whole CME structure consisting of the magnetic ejecta and the sheath is consistent with the in situ estimates obtained at the same time from SolO. However, we do not find such consistencies for the magnetic ejecta region inside the CME because it is difficult to identify the magnetic ejecta edges in the remote images.

 
more » « less
Award ID(s):
2301382
NSF-PAR ID:
10490406
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
EDP Sciences
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
682
ISSN:
0004-6361
Page Range / eLocation ID:
A107
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A fundamental property of coronal mass ejections (CMEs) is their radial expansion, which determines the increase in the CME radial size and the decrease in the CME magnetic field strength as the CME propagates. CME radial expansion can be investigated either by using remote observations or by in situ measurements based on multiple spacecraft in radial conjunction. However, there have been only few case studies combining both remote and in situ observations. It is therefore unknown if the radial expansion in the corona estimated remotely is consistent with that estimated locally in the heliosphere. To address this question, we first select 22 CME events between the years 2010 and 2013, which were well observed by coronagraphs and by two or three spacecraft in radial conjunction. We use the graduated cylindrical shell model to estimate the radial size, radial expansion speed, and a measure of the dimensionless expansion parameter of CMEs in the corona. The same parameters and two additional measures of the radial-size increase and magnetic-field-strength decrease with heliocentric distance of CMEs based on in situ measurements are also calculated. For most of the events, the CME radial size estimated by remote observations is inconsistent with the in situ estimates. We further statistically analyze the correlations of these expansion parameters estimated using remote and in situ observations, and discuss the potential reasons for the inconsistencies and their implications for the CME space weather forecasting.

     
    more » « less
  2. Abstract

    Coronal mass ejections (CMEs) are large-scale eruptions with a typical radial size at 1 au of 0.21 au but their angular width in interplanetary space is still mostly unknown, especially for the magnetic ejecta (ME) part of the CME. We take advantage of STEREO-A angular separation of 20°–60° from the Sun–Earth line from 2020 October to 2022 August, and perform a two-part study to constrain the angular width of MEs in the ecliptic plane: (a) we study all CMEs that are observed remotely to propagate between the Sun–STEREO-A and the Sun–Earth lines and determine how many impact one or both spacecraft in situ, and (b) we investigate all in situ measurements at STEREO-A or at L1 of CMEs during the same time period to quantify how many are measured by the two spacecraft. A key finding is that out of 21 CMEs propagating within 30° of either spacecraft only four impacted both spacecraft and none provided clean magnetic cloud-like signatures at both spacecraft. Combining the two approaches, we conclude that the typical angular width of an ME at 1 au is ∼20°–30°, or 2–3 times less than often assumed and consistent with a 2:1 elliptical cross section of an ellipsoidal ME. We discuss the consequences of this finding for future multi-spacecraft mission designs and for the coherence of CMEs.

     
    more » « less
  3. Abstract

    In situ measurements from spacecraft typically provide a time series at a single location through coronal mass ejections (CMEs), and they have been one of the main methods to investigate CMEs. The CME properties derived from these in situ measurements are affected by temporal changes that occur as the CME passes over the spacecraft, such as radial expansion and aging, as well as spatial variations within a CME. This study uses multispacecraft measurements of the same CME at close separations to investigate both the spatial variability (how different a CME profile is when probed by two spacecraft close to each other) and the so-called aging effect (the effect of the time evolution on in situ properties). We compile a database of 19 events from the past 4 decades measured by two spacecraft with a radial separation of <0.2 au and an angular separation of <10°. We find that the average magnetic field strength measured by the two spacecraft differs by 18% of the typical average value, which highlights nonnegligible spatial or temporal variations. For one particular event, measurements taken by the two spacecraft allow us to quantify and significantly reduce the aging effect to estimate the asymmetry of the magnetic field strength profile. This study reveals that single-spacecraft time series near 1 au can be strongly affected by aging and that correcting for self-similar expansion does not capture the whole aging effect.

     
    more » « less
  4. Abstract

    The solar wind, when measured close to 1 au, is found to flow mostly radially outward. There are, however, periods when the flow makes angles up to 15° away from the radial direction, both in the east–west and north–south directions. Stream interaction regions (SIRs) are a common cause of east–west flow deflections. Coronal mass ejections (CMEs) may be associated with nonradial flows in at least two different ways: (1) the deflection of the solar wind in the sheath region, especially close to the magnetic ejecta front boundary, may result in large nonradial flows; and (2) the expansion of the magnetic ejecta may include a nonradial component, which should be easily measured when the ejecta is crossed away from its central axis. In this work, we first present general statistics of nonradial solar wind flows as measured by STEREO/PLASTIC throughout the first 13 yr of the mission, focusing on solar cycle variation. We then focus on the larger deflection flow angles and determine that most of these are associated with SIRs near solar minimum and with CMEs near solar maximum. However, we find no clear evidence of strongly deflected flows, as would be expected if large deflections around the magnetic ejecta or ejecta with elliptical cross sections with large eccentricities were common. We use these results to develop a better understanding of CME expansion and the nature of magnetic ejecta, and point to shortcomings in our understanding of CMEs.

     
    more » « less
  5. Abstract The important role played by magnetic reconnection in the early acceleration of coronal mass ejections (CMEs) has been widely discussed. However, as CMEs may have expansion speeds comparable to their propagation speeds in the corona, it is not clear whether and how reconnection contributes to the true acceleration and expansion separately. To address this question, we analyze the dynamics of a moderately fast CME on 2013 February 27, associated with a continuous acceleration of its front into the high corona, even though its speed had reached ∼700 km s −1 , which is faster than the solar wind. The apparent acceleration of the CME is found to be due to its expansion in the radial direction. The true acceleration of the CME, i.e., the acceleration of its center, is then estimated by taking into account the expected deceleration caused by the drag force of the solar wind acting on a fast CME. It is found that the true acceleration and the radial expansion have similar magnitudes. We find that magnetic reconnection occurs after the eruption of the CME and continues during its propagation in the high corona, which contributes to its dynamic evolution. Comparison between the apparent acceleration related to the expansion and the true acceleration that compensates the drag shows that, for this case, magnetic reconnection contributes almost equally to the expansion and to the acceleration of the CME. The consequences of these measurements for the evolution of CMEs as they transit from the corona to the heliosphere are discussed. 
    more » « less