skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Discrepancies in the Properties of a Coronal Mass Ejection on Scales of 0.03 au as Revealed by Simultaneous Measurements at Solar Orbiter and Wind: The 2021 November 3–5 Event
Abstract

Simultaneous in situ measurements of coronal mass ejections (CMEs), including both plasma and magnetic field, by two spacecraft in radial alignment have been extremely rare. Here, we report on one such CME measured by Solar Orbiter (SolO) and Wind on 2021 November 3–5, while the spacecraft were radially separated by a heliocentric distance of 0.13 au and angularly by only 2.2°. We focus on the magnetic cloud (MC) part of the CME. We find notable changes in theRandNmagnetic field components and in the speed profiles inside the MC between SolO and Wind. We observe a greater speed at the spacecraft farther away from the Sun without any clear compression signatures. Since the spacecraft are close to each other and computing fast magnetosonic wave speed inside the MC, we rule out temporal evolution as the reason for the observed differences, suggesting that spatial variations over 2.2° of the MC structure are at the heart of the observed discrepancies. Moreover, using shock properties at SolO, we forecast an arrival time 2 hr 30 minutes too late for a shock that is just 5 hr 31 minutes away from Wind. Predicting the north–south component of the magnetic field at Wind from SolO measurements leads to a relative error of 55%. These results show that even angular separations as low as 2.2° (or 0.03 au in arc length) between spacecraft can have a large impact on the observed CME properties, which raises the issue of the resolutions of current CME models, potentially affecting our forecasting capabilities.

 
more » « less
Award ID(s):
1954983
PAR ID:
10566137
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
962
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
190
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context.Coronal mass ejections (CMEs) are large-scale structures of magnetized plasma that erupt from the corona into interplanetary space. The launch of Solar Orbiter (SolO) in 2020 enables in situ measurements of CMEs in the innermost heliosphere, at such distances where CMEs can be observed remotely within the inner field of view of heliospheric imagers (HIs). It thus provides the opportunity for investigations into the correspondence of the CME substructures measured in situ and observed remotely. We studied a CME that started on 2022 March 10 and was measured in situ by SolO at ∼0.44 au.

    Aims.Combining remote observations of CMEs from wide-angle imagers and in situ measurements in the innermost heliosphere allows us to compare CME properties derived through both techniques, validate the estimates, and better understand CME evolution, specifically the size and radial expansion, within 0.5 au.

    Methods.We compared the evolution of different CME substructures observed in images from the HIs on board the Ahead Solar Terrestrial Relations Observatory (STEREO-A) and the CME signatures measured in situ by SolO. The CME is found to possess a density enhancement at its rear edge in both remote and in situ observations, which validates the use of the signature of density enhancement following the CMEs to accurately identify the CME rear edge. We also estimated and compared the radial size and radial expansion speed of different substructures in both observations.

    Results.The evolution of the CME front and rear edges in remote images is consistent with the in situ CME measurements. The radial expansion (i.e., radial size and radial expansion speed) of the whole CME structure consisting of the magnetic ejecta and the sheath is consistent with the in situ estimates obtained at the same time from SolO. However, we do not find such consistencies for the magnetic ejecta region inside the CME because it is difficult to identify the magnetic ejecta edges in the remote images.

     
    more » « less
  2. Abstract

    We discussWindobservations of a long and slow magnetic cloud (MC) propagating through large‐amplitude Alfvén waves (LAAWs). The MC axis has a strong component along GSEX, as also confirmed by a Grad‐Shafranov reconstruction. It is overtaking the solar wind at a speed roughly equal to the upstream Alfvén speed, leading to a weak shock wave 17 hr ahead. We give evidence to show that the nominal sheath region is populated by LAAWs: (i) a well‐defined de Hoffmann‐Teller frame in which there is excellent correlation between the field and flow vectors, (ii) constant field and total pressure, and (iii) an Alfvén ratio (i.e., ratio of kinetic‐to‐magnetic energy of the fluctuations) near unity at frequencies much lower than the ion cyclotron frequency in the spacecraft frame. In the region where the LAAWs approach the MC's front boundary there are field and flow discontinuities. At the first, magnetic reconnection is taking place, as deduced from a stress balance test (Walén test). This severs connection of some field lines to the Sun and the solar wind strahl disappears. There follows a 2‐hr interval where the magnetic field strength is diminished while pressure balance is maintained. Here the bidirectionality of the suprathermal electron flows is intermittently disrupted. This interval ends with a slow expansion fan downstream of which there is a dropout of halo electrons just inside the front boundary of the MC. This study illustrates an untypical case of a slow MC interacting with LAAWs in the slow solar wind.

     
    more » « less
  3. Abstract

    We present an analysis of in situ and remote-sensing measurements of a coronal mass ejection (CME) that erupted on 2021 February 20 and impacted both the Solar TErrestrial RElations Observatory (STEREO)-A and the Wind spacecraft, which were separated longitudinally by 55°. Measurements on 2021 February 24 at both spacecraft are consistent with the passage of a magnetic ejecta (ME), making this one of the widest reported multispacecraft ME detections. The CME is associated with a low-inclined and wide filament eruption from the Sun’s southern hemisphere, which propagates between STEREO-A and Wind around E34. At STEREO-A, the measurements indicate the passage of a moderately fast (∼425 km s−1) shock-driving ME, occurring 2–3 days after the end of a high speed stream (HSS). At Wind, the measurements show a faster (∼490 km s−1) and much shorter ME, not preceded by a shock nor a sheath, and occurring inside the back portion of the HSS. The ME orientation measured at both spacecraft is consistent with a passage close to the legs of a curved flux rope. The short duration of the ME observed at Wind and the difference in the suprathermal electron pitch-angle data between the two spacecraft are the only results that do not satisfy common expectations. We discuss the consequence of these measurements on our understanding of the CME shape and extent and the lack of clear signatures of the interaction between the CME and the HSS.

     
    more » « less
  4. Abstract

    This paper presents a stochastic three-dimensional focused transport simulation of solar energetic particles (SEPs) produced by a data-driven coronal mass ejection (CME) shock propagating through a data-driven model of coronal and heliospheric magnetic fields. The injection of SEPs at the CME shock is treated using diffusive shock acceleration of post-shock suprathermal solar wind ions. A time-backward stochastic simulation is employed to solve the transport equation to obtain the SEP time–intensity profile at any location, energy, and pitch angle. The model is applied to a SEP event on 2020 May 29, observed by STEREO-A close to ∼1 au and by Parker Solar Probe (PSP) when it was about 0.33 au away from the Sun. The SEP event was associated with a very slow CME with a plane-of-sky speed of 337 km s−1at a height below 6RSas reported in the SOHO/LASCO CME catalog. We compute the time profiles of particle flux at PSP and STEREO-A locations, and estimate both the spectral index of the proton energy spectrum for energies between ∼2 and 16 MeV and the equivalent path length of the magnetic field lines experienced by the first arriving SEPs. We find that the simulation results are well correlated with observations. The SEP event could be explained by the acceleration of particles by a weak CME shock in the low solar corona that is not magnetically connected to the observers.

     
    more » « less
  5. Abstract

    We report on the solar and interplanetary (IP) causes of the third largest geomagnetic storm (26 August 2018) in solar cycle 24. The underlying coronal mass ejection (CME) originating from a quiescent filament region becomes a 440 km/s magnetic cloud (MC) at 1 au after ∼5 days. The prolonged CME acceleration (for ∼24 hr) coincides with the time profiles of the post‐eruption arcade intensity and reconnected flux. Chen et al. (2019,https://doi.org/10.3847/1538-4357/ab3f36) obtain a lower speed since they assumed that the CME does not accelerate after ∼12 hr. The presence of multiple coronal holes near the filament channel and the high‐speed wind from them seem to have the combined effect of producing complex rotation in the corona and IP medium resulting in a high‐inclination MC. The Dst time profile in the main phase steepens significantly (rapid increase in storm intensity) coincident with the density increase (prominence material) in the second half of the MC. Simulations using the Comprehensive Inner Magnetosphere‐Ionosphere model show that a higher ring current energy results from larger dynamic pressure (density) in MCs. Furthermore, the Dst index is highly correlated with the main‐phase time integral of the ring current injection that includes density, consistent with the simulations. A complex temporal structure develops in the storm main phase if the underlying MC has a complex density structure during intervals of southward IP magnetic field. We conclude that the high intensity of the storm results from the prolonged CME acceleration, complex rotation of the CME flux rope, and the high density in the 1‐au MC.

     
    more » « less