Magnetospheres are a ubiquitous feature of magnetized bodies embedded in a plasma flow. While large planetary magnetospheres have been studied for decades by spacecraft, ion-scale “mini” magnetospheres can provide a unique environment to study kinetic-scale, collisionless plasma physics in the laboratory to help validate models of larger systems. In this work, we present preliminary experiments of ion-scale magnetospheres performed on a unique high-repetition-rate platform developed for the Large Plasma Device at the University of California, Los Angeles. The experiments utilize a high-repetition-rate laser to drive a fast plasma flow into a pulsed dipole magnetic field embedded in a uniform magnetized background plasma. 2D maps of the magnetic field with high spatial and temporal resolution are measured with magnetic flux probes to examine the evolution of magnetosphere and current density structures for a range of dipole and upstream parameters. The results are further compared to 2D particle-in-cell simulations to identify key observational signatures of the kinetic-scale structures and dynamics of the laser-driven plasma. We find that distinct 2D kinetic-scale magnetopause and diamagnetic current structures are formed at higher dipole moments, and their locations are consistent with predictions based on pressure balances and energy conservation.
- Award ID(s):
- 2148653
- PAR ID:
- 10490440
- Publisher / Repository:
- arxiv
- Date Published:
- Journal Name:
- Journal of physics Conference series
- ISSN:
- 1742-6588
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We summarize recent attempts to unravel the role of plasma kinetic effects in radiation mediated shocks. Such shocks form in all strong stellar explosions and are responsible for the early electromagnetic emission released from these events. A key issue that has been overlooked in all previous works is the nature of the coupling between the charged leptons, that mediate the radiation force, and the ions, which are the dominant carriers of the shock energy. Our preliminary investigation indicates that in the case of relativistic shocks, as well as Newtonian shocks in multi-ion plasma, this coupling is driven by either, transverse magnetic fields of a sufficiently magnetized upstream medium, or plasma microturbulence if strong enough magnetic fields are absent. We discuss the implications for the shock breakout signal, as well as abundance evolution and kilonova emission in binary neutron star mergers.more » « less
-
Strongly magnetized plasmas, which are characterized by the particle gyrofrequency exceeding the plasma frequency, exhibit novel transport properties. For example, recent work showed that the friction force on a test charge moving through a strongly magnetized plasma not only consists of the typical stopping power component but also includes components perpendicular to the test charge's velocity. However, these studies only considered test charges that have the same sign as the charge of the plasma particles. Here, we extend these calculations to the case of charges with opposite signs (such as an ion interacting with strongly magnetized electrons). This is done with both a novel generalized Boltzmann kinetic theory and molecular dynamics simulations. It is found that the friction force changes dramatically depending on the sign of the interacting charges. Likewise, the stopping power component for oppositely charged particles decreases in magnitude compared with like-charged particles, and the perpendicular components increase in magnitude. Moreover, the difference between the two cases increases as the gyrofrequency becomes larger compared with the plasma frequency. The electrical resistivity is calculated from the friction force, where it is found that strong magnetization in conjunction with oppositely charged interactions significantly decreases the parallel resistivity and increases the perpendicular resistivity.
-
A model for plasma confinement is developed and applied for describing an electrically confined thermonuclear plasma. The plasma confinement model includes both an analytical approach that excludes space charge effects and a classical trajectory Monte Carlo simulation that accounts for space charge. The plasma consists of reactant ions that form a non-neutral plasma without electrons. The plasma drifts around a negatively charged electrode. Conditions are predicted for confining a deuterium–tritium plasma using a 460 kV applied electric potential difference. The ion plasma would have a 20 keV temperature, a 1020 m−3 peak density, and a 110 keV average kinetic energy per ion (including drift and thermal portions at a certain point in the plasma). The fusion energy production rate is predicted to be 10 times larger than the energy loss rate, including contributions associated with both plasma loss to electrodes and secondary electron emission. However, an approach for enhancing the fusion power density may have to be employed to realize a practical use for centrifugal-electrostatic confinement fusion.
-
Low-temperature plasmas have seen increasing use for synthesizing high-quality, mono-disperse nanoparticles (NPs). Recent work has highlighted that an important process in NP growth in plasmas is particle trapping—small, negatively charged nanoparticles become trapped by the positive electrostatic potential in the plasma, even if only momentarily charged. In this article, results are discussed from a computational investigation into how pulsing the power applied to an inductively coupled plasma (ICP) reactor may be used for controlling the size of NPs synthesized in the plasma. The model system is an ICP at 1 Torr to grow silicon NPs from an Ar/SiH 4 gas mixture. This system was simulated using a two-dimensional plasma hydrodynamics model coupled to a three-dimensional kinetic NP growth and trajectory tracking model. The effects of pulse frequency and pulse duty cycle are discussed. We identified separate regimes of pulsing where particles become trapped for one pulsed cycle, a few cycles, and many cycles—each having noticeable effects on particle size distributions. For the same average power, pulsing can produce a stronger trapping potential for particles when compared to continuous wave power, potentially increasing particle mono-dispersity. Pulsing may also offer a larger degree of control over particle size for the same average power. Experimental confirmation of predicted trends is discussed.more » « less