skip to main content


This content will become publicly available on January 1, 2025

Title: BUFFALO/Flashlights: Constraints on the abundance of lensed supergiant stars in the Spock galaxy at redshift 1

In this work, we present a constraint on the abundance of supergiant (SG) stars at redshiftz ≈ 1, based on recent observations of a strongly lensed arc at this redshift. First we derived a free-form model of MACS J0416.1-2403 using data from the Beyond Ultra-deep Frontier Fields and Legacy Observations (BUFFALO) program. The new lens model is based on 72 multiply lensed galaxies that produce 214 multiple images, making it the largest sample of spectroscopically confirmed lensed galaxies on this cluster. The larger coverage in BUFFALO allowed us to measure the shear up to the outskirts of the cluster, and extend the range of lensing constraints up to ∼1 Mpc from the central region, providing a mass estimate up to this radius. As an application, we make predictions for the number of high-redshift multiply lensed galaxies detected in future observations with theJames WebbSpace Telescope (JWST). Then we focus on a previously known lensed galaxy atz = 1.0054, nicknamed Spock, which contains four previously reported transients. We interpret these transients as microcaustic crossings of SG stars and explain how we computed the probability of such events. Based on simplifications regarding the stellar evolution, we find that microlensing (by stars in the intracluster medium) of SG stars atz = 1.0054 can fully explain these events. The inferred abundance of SG stars is consistent with either (1) a number density of stars with bolometric luminosities beyond the Humphreys-Davidson (HD) limit (Lmax ≈ 6 × 105Lfor red stars), which is below ∼400 stars kpc−2, or (2) the absence of stars beyond the HD limit but with a SG number density of ∼9000 kpc−2for stars with luminosities between 105Land 6 × 105L. This is equivalent to one SG star per 10 × 10 pc2. Finally, we make predictions for future observations with JWST’s NIRcam. We find that in observations made with theF200Wfilter that reach 29 mag AB, if cool red SG stars exist atz ≈ 1 beyond the HD limit, they should be easily detected in this arc.

 
more » « less
Award ID(s):
1908823
NSF-PAR ID:
10490454
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Astronomy & Astrophysics
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
681
ISSN:
0004-6361
Page Range / eLocation ID:
A124
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report the discovery of two extremely magnified lensed star candidates behind the galaxy cluster MACS J0647.7+015 using recent multiband James Webb Space Telescope (JWST) NIRCam observations. The star candidates are seen in a previously known,zphot≃ 4.8 dropout giant arc that straddles the critical curve. The candidates lie near the expected critical curve position, but lack clear counter-images on the other side of it, suggesting these are possibly stars undergoing caustic crossings. We present revised lensing models for the cluster, including multiply imaged galaxies newly identified in the JWST data, and use them to estimate background macro-magnifications of at least ≳90 and ≳50 at the positions of the two candidates, respectively. With these values, we expect effective, caustic-crossing magnifications of ∼[103–105] for the two star candidates. The spectral energy distributions of the two candidates match well the spectra of B-type stars with best-fit surface temperatures of ∼10,000 K, and ∼12,000 K, respectively, and we show that such stars with masses ≳20Mand ≳50M, respectively, can become sufficiently magnified to be observable. We briefly discuss other alternative explanations and conclude that these objects are likely lensed stars, but also acknowledge that the less-magnified candidate may alternatively reside in a star cluster. These star candidates constitute the second highest-redshift examples to date after Earendel atzphot≃ 6.2, establishing further the potential of studying extremely magnified stars at high redshifts with JWST. Planned future observations, including with NIRSpec, will enable a more detailed view of these candidates in the near future.

     
    more » « less
  2. Abstract

    We present spatially resolved morphological properties of [CII] 158μm, [OIII] 88μm, dust, and rest-frame ultraviolet (UV) continuum emission for A1689-zD1, a strongly lensed, sub-L* galaxy atz= 7.13, by utilizing deep Atacama Large Millimeter/submillimeter Array (ALMA) and Hubble Space Telescope (HST) observations. While the [OIII] line and UV continuum are compact, the [CII] line is extended up to a radius ofr∼ 12 kpc. Using multi-band rest-frame far-infrared continuum data ranging from 52 to 400μm, we find an average dust temperature and emissivity index ofTdust=4114+17K andβ=1.70.7+1.1, respectively, across the galaxy. We find slight differences in the dust continuum profiles at different wavelengths, which may indicate that the dust temperature decreases with distance. We map the star formation rate (SFR) via IR and UV luminosities and determine a total SFR of 37 ± 1Myr−1with an obscured fraction of 87%. While the [OIII] line is a good tracer of the SFR, the [CII] line shows deviation from the localL[CII]-SFR relations in the outskirts of the galaxy. Finally, we observe a clear difference in the line profile between [CII] and [OIII], with significant residuals (∼5σ) in the [OIII] line spectrum after subtracting a single Gaussian model. This suggests a possible origin of the extended [CII] structure from the cooling of hot ionized outflows. The extended [CII] and high-velocity [OIII] emission may both contribute in part to the highL[OIII]/L[CII]ratios recently reported inz> 6 galaxies.

     
    more » « less
  3. Abstract

    About 70 luminous quasars discovered atz> 6.5 are strongly biased toward the bright end, thus not providing a comprehensive view of quasar abundance beyond the cosmic dawn. We present the predicted results of the Roman/Rubin high-redshift quasar survey, yielding 3 times more, 2–4 mag deeper quasar samples, probing high-redshift quasars across a broad range of luminosities, especially faint quasars atLbol∼ 1010LorM1450∼ −22, which are currently poorly explored. We include high-zquasars, galactic dwarfs, and low-zcompact galaxies with similar colors as quasar candidates. We create mock catalogs based on population models to evaluate selection completeness and efficiency. We utilize the classical color dropout method in thezandYbands to select primary quasar candidates, followed up with the Bayesian selection method to identify quasars. We show that overall selection completeness >80% and efficiency ∼10% at 6.5 <z< 9, with 180 quasars atz> 6.5, 20 atz> 7.5, and 2 atz> 8.5. The quasar yields depend sensitively on the assumed quasar luminosity shape and redshift evolution. Brown dwarf rejection through proper motion up to 50% can be made for stars brighter than 25 mag, low-zgalaxies dominate at fainter magnitude. Our results show that Roman/Rubin are able to discover a statistical sample of the earliest and faintest quasars in the Universe. The new valuable data sets are worth follow-up studies with JWST and Extremely Large Telescopes to determine the quasar luminosity function faint end slope and constraint the supermassive black holes growth in the early Universe.

     
    more » « less
  4. Abstract

    We report CO(5 → 4) and CO(6 → 5) line observations in the dusty starbursting galaxy CRLE (z= 5.667) and the main-sequence (MS) galaxy HZ10 (z= 5.654) with the Northern Extended Millimeter Array. CRLE is the most luminousz> 5 starburst in the COSMOS field and HZ10 is the most gas-rich “normal” galaxy currently known atz> 5. We find line luminosities for CO(5 → 4) and CO(6 → 5) of (4.9 ± 0.5) and (3.8 ± 0.4) × 1010K km s−1pc2for CRLE and upper limits of < 0.76 and < 0.60 × 1010K km s−1pc2for HZ10, respectively. The CO excitation of CRLE appears comparable to otherz> 5 dusty star-forming galaxies. For HZ10, these line luminosity limits provide the first significant constraints of this kind for an MS galaxy atz> 5. We find the upper limit ofL54/L21in HZ10 could be similar to the average value for MS galaxies aroundz≈ 1.5, suggesting that MS galaxies with comparable gas excitation may already have existed one billion years after the Big Bang. For CRLE we determine the most likely values for the H2density, kinetic temperature, and dust temperature based on excitation modeling of the CO line ladder. We also derive a total gas mass of (7.1 ± 1.3) × 1010M. Our findings provide some of the currently most detailed constraints on the gas excitation that sets the conditions for star formation in a galaxy protocluster environment atz> 5.

     
    more » « less
  5. Abstract

    We derive the spatial and wavelength behavior of dust attenuation in the multiple-armed spiral galaxy VV 191b using backlighting by the superimposed elliptical system VV 191a in a pair with an exceptionally favorable geometry for this measurement. Imaging using the James Webb Space Telescope and Hubble Space Telescope spans the wavelength range 0.3–4.5μm with high angular resolution, tracing the dust in detail from 0.6–1.5μm. Distinct dust lanes continue well beyond the bright spiral arms, and trace a complex web, with a very sharp radial cutoff near 1.7 Petrosian radii. We present attenuation profiles and coverage statistics in each band at radii 14–21 kpc. We derive the attenuation law with wavelength; the data both within and between the dust lanes clearly favor a stronger reddening behavior (R=AV/EBV≈ 2.0 between 0.6 and 0.9μm, approaching unity by 1.5μm) than found for starbursts and star-forming regions of galaxies. Power-law extinction behavior ∝λβgivesβ= 2.1 from 0.6–0.9μm.Rdecreases at increasing wavelengths (R≈ 1.1 between 0.9 and 1.5μm), whileβsteepens to 2.5. Mixing regions of different column density flattens the wavelength behavior, so these results suggest a different grain population than in our vicinity. The NIRCam images reveal a lens arc and counterimage from a background galaxy atz≈ 1, spanning 90° azimuthally at 2.″8 from the foreground elliptical-galaxy nucleus, and an additional weakly lensed galaxy. The lens model and imaging data give a mass/light ratioM/LB= 7.6 in solar units within the Einstein radius 2.0 kpc.

     
    more » « less