skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 6, 2025

Title: Domain-specific representation of social inference by neurons in the human amygdala and hippocampus
Inferring the intentions and emotions of others from behavior is crucial for social cognition. While neuroimaging studies have identified brain regions involved in social inference, it remains unknown whether performing social inference is an abstract computation that generalizes across different stimulus categories or is specific to certain stimulus domain. We recorded single-neuron activity from the medial temporal lobe (MTL) and the medial frontal cortex (MFC) in neurosurgical patients performing different types of inferences from images of faces, hands, and natural scenes. Our findings indicate distinct neuron populations in both regions encoding inference type for social (faces, hands) and nonsocial (scenes) stimuli, while stimulus category was itself represented in a task-general manner. Uniquely in the MTL, social inference type was represented by separate subsets of neurons for faces and hands, suggesting a domain-specific representation. These results reveal evidence for specialized social inference processes in the MTL, in which inference representations were entangled with stimulus type as expected from a domain-specific process.  more » « less
Award ID(s):
2401398
PAR ID:
10574510
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Science
Date Published:
Journal Name:
Science Advances
Volume:
10
Issue:
49
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The human medial temporal lobe (MTL) plays a crucial role in recognizing visual objects, a key cognitive function that relies on the formation of semantic representations. Nonetheless, it remains unknown how visual information of general objects is translated into semantic representations in the MTL. Furthermore, the debate about whether the human MTL is involved in perception has endured for a long time. To address these questions, we investigated three distinct models of neural object coding—semantic coding, axis-based feature coding, and region-based feature coding—in each subregion of the MTL, using high-resolution fMRI in two male and six female participants. Our findings revealed the presence of semantic coding throughout the MTL, with a higher prevalence observed in the parahippocampal cortex (PHC) and perirhinal cortex (PRC), while axis coding and region coding were primarily observed in the earlier regions of the MTL. Moreover, we demonstrated that voxels exhibiting axis coding supported the transition to region coding and contained information relevant to semantic coding. Together, by providing a detailed characterization of neural object coding schemes and offering a comprehensive summary of visual coding information for each MTL subregion, our results not only emphasize a clear role of the MTL in perceptual processing but also shed light on the translation of perception-driven representations of visual features into memory-driven representations of semantics along the MTL processing pathway. Significance StatementIn this study, we delved into the mechanisms underlying visual object recognition within the human medial temporal lobe (MTL), a pivotal region known for its role in the formation of semantic representations crucial for memory. In particular, the translation of visual information into semantic representations within the MTL has remained unclear, and the enduring debate regarding the involvement of the human MTL in perception has persisted. To address these questions, we comprehensively examined distinct neural object coding models across each subregion of the MTL, leveraging high-resolution fMRI. We also showed transition of information between object coding models and across MTL subregions. Our findings significantly contributes to advancing our understanding of the intricate pathway involved in visual object coding. 
    more » « less
  2. We have created encoding manifolds to reveal the overall responses of a brain area to a variety of stimuli. Encoding manifolds organize response properties globally: each point on an encoding manifold is a neuron, and nearby neurons respond similarly to the stimulus ensemble in time. We previously found, using a large stimulus ensemble including optic flows, that encoding manifolds for the retina were highly clustered, with each cluster corresponding to a different ganglion cell type. In contrast, the topology of the V1 manifold was continuous. Now, using responses of individual neurons from the Allen Institute Visual Coding-Neuropixels dataset in the mouse, we infer encoding manifolds for V1 and for five higher cortical visual areas (VISam, VISal, VISpm, VISlm, and VISrl). We show here that the encoding manifold topology computed only from responses to various grating stimuli is also continuous, not only for V1 but also for the higher visual areas, with smooth coordinates spanning it that include, among others, orientation selectivity and firing-rate magnitude. Surprisingly, the encoding manifold for gratings also provides information about natural scene responses. To investigate whether neurons respond more strongly to gratings or natural scenes, we plot the log ratio of natural scene responses to grating responses (mean firing rates) on the encoding manifold. This reveals a global coordinate axis organizing neurons' preferences between these two stimuli. This coordinate is orthogonal (i.e., uncorrelated) to that organizing firing rate magnitudes in VISp. Analyzing layer responses, a preference for gratings is concentrated in layer 6, whereas preference for natural scenes tends to be higher in layers 2/3 and 4. We also find that preference for natural scenes dominates the responses of neurons that prefer low (0.02 cpd) and high (0.32 cpd) spatial frequencies, rather than intermediate ones (0.04 to 0.16 cpd). Conclusion: while gratings seem limited and natural scenes unconstrained, machine learning algorithms can reveal subtle relationships between them beyond linear techniques. 
    more » « less
  3. The brain mechanisms of memory consolidation remain elusive. Here, we examine blood-oxygen-level-dependent (BOLD) correlates of image recognition through the scope of multiple influential systems consolidation theories. We utilize the longitudinal Natural Scenes Dataset, a 7-Tesla functional magnetic resonance imaging human study in which ∼135,000 trials of image recognition were conducted over the span of a year among eight subjects. We find that early- and late-stage image recognition associates with both medial temporal lobe (MTL) and visual cortex when evaluating regional activations and a multivariate classifier. Supporting multiple-trace theory (MTT), parts of the MTL activation time course show remarkable fit to a 20-y-old MTT time-dynamical model predicting early trace intensity increases and slight subsequent interference ( R 2 > 0.90). These findings contrast a simplistic, yet common, view that memory traces are transferred from MTL to cortex. Next, we test the hypothesis that the MTL trace signature of memory consolidation should also reflect synaptic “desaturation,” as evidenced by an increased signal-to-noise ratio. We find that the magnitude of relative BOLD enhancement among surviving memories is positively linked to the rate of removal (i.e., forgetting) of competing traces. Moreover, an image-feature and time interaction of MTL and visual cortex functional connectivity suggests that consolidation mechanisms improve the specificity of a distributed trace. These neurobiological effects do not replicate on a shorter timescale (within a session), implicating a prolonged, offline process. While recognition can potentially involve cognitive processes outside of memory retrieval (e.g., re-encoding), our work largely favors MTT and desaturation as perhaps complementary consolidative memory mechanisms. 
    more » « less
  4. Causal inference is at the heart of empirical research in natu- ral and social sciences and is critical for scientific discovery and informed decision making. The gold standard in causal inference is performing randomized controlled trials; unfortu- nately these are not always feasible due to ethical, legal, or cost constraints. As an alternative, methodologies for causal inference from observational data have been developed in sta- tistical studies and social sciences. However, existing meth- ods critically rely on restrictive assumptions such as the study population consisting of homogeneous elements that can be represented in a single flat table, where each row is referred to as a unit. In contrast, in many real-world set- tings, the study domain naturally consists of heterogeneous elements with complex relational structure, where the data is naturally represented in multiple related tables. In this paper, we present a formal framework for causal inference from such relational data. We propose a declarative language called CaRL for capturing causal background knowledge and assumptions, and specifying causal queries using simple Datalog-like rules. CaRL provides a foundation for infer- ring causality and reasoning about the effect of complex interventions in relational domains. We present an extensive experimental evaluation on real relational data to illustrate the applicability of CaRL in social sciences and healthcare. 
    more » « less
  5. The medial temporal lobe (MTL) is traditionally considered to be a system that is specialized for long-term memory. Recent work has challenged this notion by demonstrating that this region can contribute to many domains of cognition beyond long-term memory, including perception and attention. One potential reason why the MTL (and hippocampus specifically) contributes broadly to cognition is that it contains relational representations—representations of multidimensional features of experience and their unique relationship to one another—that are useful in many different cognitive domains. Here, we explore the hypothesis that the hippocampus/MTL plays a critical role in attention and perception via relational representations. We compared human participants with MTL damage to healthy age- and education-matched individuals on attention tasks that varied in relational processing demands. On each trial, participants viewed two images (rooms with paintings). On “similar room” trials, they judged whether the rooms had the same spatial layout from a different perspective. On “similar art” trials, they judged whether the paintings could have been painted by the same artist. On “identical” trials, participants simply had to detect identical paintings or rooms. MTL lesion patients were significantly and selectively impaired on the similar room task. This work provides further evidence that the hippocampus/MTL plays a ubiquitous role in cognition by virtue of its relational and spatial representations and highlights its important contributions to rapid perceptual processes that benefit from attention. 
    more » « less