skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: DoG is SGD’s Best Friend: A Parameter-Free Dynamic Step Size Schedule
We propose a tuning-free dynamic SGD step size formula, which we call Distance over Gradients (DoG). The DoG step sizes depend on simple empirical quantities (distance from the initial point and norms of gradients) and have no “learning rate” parameter. Theoretically, we show that, for stochastic convex optimization, a slight variation of the DoG formula enjoys strong, high-probability parameter-free convergence guarantees and iterate movement bounds. Empirically, we consider a broad range of vision and language transfer learning tasks, and show that DoG’s performance is close to that of SGD with tuned learning rate. We also propose a per-layer variant of DoG that generally outperforms tuned SGD, approaching the performance of tuned Adam. A PyTorch implementation of our algorithms is available at https://github.com/formll/dog.  more » « less
Award ID(s):
2239527
PAR ID:
10490603
Author(s) / Creator(s):
; ;
Publisher / Repository:
Proceedings of machine learning research
Date Published:
Journal Name:
Proceedings of the 40th International Conference on Machine Learning
ISSN:
2640-3498
Format(s):
Medium: X
Location:
Hawaii
Sponsoring Org:
National Science Foundation
More Like this
  1. Parameter-free stochastic gradient descent (PFSGD) algorithms do not require setting learning rates while achieving optimal theoretical performance. In practical applications, however, there remains an empirical gap between tuned stochastic gradient descent (SGD) and PFSGD. In this paper, we close the empirical gap with a new parameter-free algorithm based on continuous-time Coin-Betting on truncated models. The new update is derived through the solution of an Ordinary Differential Equation (ODE) and solved in a closed form. We show empirically that this new parameter-free algorithm outperforms algorithms with the "best default" learning rates and almost matches the performance of finely tuned baselines without anything to tune. 
    more » « less
  2. null (Ed.)
    We consider the problem of minimizing a convex risk with stochastic subgradients guaranteeing $$\epsilon$$-locally differentially private ($$\epsilon$$-LDP). While it has been shown that stochastic optimization is possible with $$\epsilon$$-LDP via the standard SGD, its convergence rate largely depends on the learning rate, which must be tuned via repeated runs. Further, tuning is detrimental to privacy loss since it significantly increases the number of gradient requests. In this work, we propose BANCO (Betting Algorithm for Noisy COins), the first $$\epsilon$$-LDP SGD algorithm that essentially matches the convergence rate of the tuned SGD without any learning rate parameter, reducing privacy loss and saving privacy budget. 
    more » « less
  3. Meila, Marina; Zhang, Tong (Ed.)
    Stochastic Gradient Descent (SGD) is a popular tool in training large-scale machine learning models. Its performance, however, is highly variable, depending crucially on the choice of the step sizes. Accordingly, a variety of strategies for tuning the step sizes have been proposed, ranging from coordinate-wise approaches (a.k.a. “adaptive” step sizes) to sophisticated heuristics to change the step size in each iteration. In this paper, we study two step size schedules whose power has been repeatedly confirmed in practice: the exponential and the cosine step sizes. For the first time, we provide theoretical support for them proving convergence rates for smooth non-convex functions, with and without the Polyak-Łojasiewicz (PL) condition. Moreover, we show the surprising property that these two strategies are adaptive to the noise level in the stochastic gradients of PL functions. That is, contrary to polynomial step sizes, they achieve almost optimal performance without needing to know the noise level nor tuning their hyperparameters based on it. Finally, we conduct a fair and comprehensive empirical evaluation of real-world datasets with deep learning architectures. Results show that, even if only requiring at most two hyperparameters to tune, these two strategies best or match the performance of various finely-tuned state-of-the-art strategies. 
    more » « less
  4. Stochastic gradient descent (SGD) is the optimization algorithm of choice in many machine learning applications such as regularized empirical risk minimization and training deep neural networks. The classical analysis of convergence of SGD is carried out under the assumption that the norm of the stochastic gradient is uniformly bounded. While this might hold for some loss functions, it is always violated for cases where the objective function is strongly convex. In (Bottou et al.,2016) a new analysis of convergence of SGD is performed under the assumption that stochastic gradients are bounded with respect to the true gradient norm. Here we show that for stochastic problems arising in machine learning such bound always holds. Moreover, we propose an alternative convergence analysis of SGD with diminishing learning rate regime, which is results in more relaxed conditions that those in (Bottou et al.,2016). We then move on the asynchronous parallel setting, and prove convergence of the Hogwild! algorithm in the same regime, obtaining the first convergence results for this method in the case of diminished learning rate. 
    more » « less
  5. Dasgupta, Sanjoy; Haghtalab, Nika (Ed.)
    Parameter-free algorithms are online learning algorithms that do not require setting learning rates. They achieve optimal regret with respect to the distance between the initial point and any competitor. Yet, parameter-free algorithms do not take into account the geometry of the losses. Recently, in the stochastic optimization literature, it has been proposed to instead use truncated linear lower bounds, which produce better performance by more closely modeling the losses. In particular, truncated linear models greatly reduce the problem of overshooting the minimum of the loss function. Unfortunately, truncated linear models cannot be used with parameter-free algorithms because the updates become very expensive to compute. In this paper, we propose new parameter-free algorithms that can take advantage of truncated linear models through a new update that has an “implicit” flavor. Based on a novel decomposition of the regret, the new update is efficient, requires only one gradient at each step, never overshoots the minimum of the truncated model, and retains the favorable parameter-free properties. We also conduct an empirical study demonstrating the practical utility of our algorithms. 
    more » « less