An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land–atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co-evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD. 
                        more » 
                        « less   
                    
                            
                            The impacts of rising vapour pressure deficit in natural and managed ecosystems
                        
                    
    
            Abstract An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land–atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co‐evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10490690
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Plant, Cell & Environment
- ISSN:
- 0140-7791
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Recent studies have reported worldwide vegetation suppression in response to increasing atmospheric vapor pressure deficit (VPD). Here, we integrate multisource datasets to show that increasing VPD caused by warming alone does not suppress vegetation growth in northern peatlands. A site-level manipulation experiment and a multiple-site synthesis find a neutral impact of rising VPD on vegetation growth; regional analysis manifests a strong declining gradient of VPD suppression impacts from sparsely distributed peatland to densely distributed peatland. The major mechanism adopted by plants in response to rising VPD is the “open” water-use strategy, where stomatal regulation is relaxed to maximize carbon uptake. These unique surface characteristics evolve in the wet soil‒air environment in the northern peatlands. The neutral VPD impacts observed in northern peatlands contrast with the vegetation suppression reported in global nonpeatland areas under rising VPD caused by concurrent warming and decreasing relative humidity, suggesting model improvement for representing VPD impacts in northern peatlands remains necessary.more » « less
- 
            Abstract Atmospheric dryness (i.e., high vapor pressure deficit, VPD), together with soil moisture stress, limits plant photosynthesis and threatens ecosystem functioning. Regions where rainfall and soil moisture are relatively sufficient, such as the rainfed part of the U.S. Corn Belt, are especially prone to high VPD stress. With globally projected rising VPD under climate change, it is crucial to understand, simulate, and manage its negative impacts on agricultural ecosystems. However, most existing models simulating crop response to VPD are highly empirical and insufficient in capturing plant response to high VPD, and improved modeling approaches are urgently required. In this study, by leveraging recent advances in plant hydraulic theory, we demonstrate that the VPD constraints in the widely used coupled photosynthesis‐stomatal conductance models alone are inadequate to fully capture VPD stress effects. Incorporating plant xylem hydraulic transport significantly improves the simulation of transpiration under high VPD, even when soil moisture is sufficient. Our results indicate that the limited water transport capability from the plant root to the leaf stoma could be a major mechanism of plant response to high VPD stress. We then introduce a Demand‐side Hydraulic Limitation Factor (DHLF) that simplifies the xylem and the leaf segments of the plant hydraulic model to only one parameter yet captures the effect of plant hydraulic transport on transpiration response to high VPD with similar accuracy. We expect the improved understanding and modeling of crop response to high VPD to help contribute to better management and adaptation of agricultural systems in a changing climate.more » « less
- 
            Abstract Rising global temperatures and vapor pressure deficits (VPDs) are increasing plant water demand and becoming major drivers of large-scale plant mortality. Controlling transient leaf water loss after stomatal closure (minimum stomatal conductance [gmin]) is recognized as a key trait determining how long plants survive during soil drought. Yet, substantial uncertainty remains regarding how gmin responds to elevated temperatures and VPD and the underlying mechanisms. We measured gmin in 24 Quercus species from temperate and Mediterranean climates to determine whether gmin was sensitive to a coupled temperature and VPD increase. We also explored mechanistic links to phenology, climate, evolutionary history, and leaf anatomy. We found that gmin in all species exhibited a nonlinear negative temperature and VPD dependence. At 25 °C (VPD = 2.2 kPa), gmin varied from 1.19 to 8.09 mmol m−2 s−1 across species but converged to 0.57 ± 0.06 mmol m−2 s−1 at 45 °C (VPD = 6.6 kPa). In a subset of species, the effect of temperature and VPD on gmin was reversible and linked to the degree of stomatal closure, which was greater at 45 °C than at 25 °C. Our results show that gmin is dependent on temperature and VPD, is highly conserved in Quercus species, and is linked to leaf anatomy and stomatal behavior.more » « less
- 
            Long-term snowpack decline is among the best-understood impacts of climate change on water resources systems. This trend has been observed for decades and is projected to continue even in climate projections in which total runoff volumes do not change significantly. For basins in which snowpack has historically provided intra-annual water storage, snowpack decline creates several issues that may require adaptation to infrastructure, operations, or both. This study develops an approach to analyze vulnerabilities and adaptations specifically focused on the challenge of snowpack decline, using the northern California reservoir system as a case study. We first introduce an open-source daily time-step simulation model of this system, which is validated against historical observations of operations. Multiobjective vulnerabilities to snowpack decline are then examined using a set of downscaled climate scenarios to capture the physically based effects of rising temperatures. A statistical analysis shows that the primary impacts include water supply shortage and lower reservoir storage resulting from the seasonal shift in runoff timing. These challenges identified from the vulnerability assessment inform proposed adaptations to operations to maintain multiobjective performance across the ensemble of plausible future scenarios, which include other uncertain hydrologic changes. To adapt seasonal reservoir management without the cost of additional infrastructure, we specifically propose and test adaptations that parameterize the structure of existing operating policies: a dynamic flood control rule curve and revised snowpack-to-streamflow forecasting methods to improve seasonal runoff predictability given declining snowpack. These adaptations are shown to mitigate the majority of vulnerabilities caused by snowpack decline across the scenario ensemble, with remaining opportunities for improvement using formal policy search and dynamic adaptation techniques. The coupled approach to vulnerability assessment and adaptation is generalizable to other snowmelt-dominated water resources systems facing the loss of seasonal storage due to rising temperatures.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
