skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modulating Phase Behavior in Fatty Acid-Modified Elastin-like Polypeptides (FAMEs): Insights into the Impact of Lipid Length on Thermodynamics and Kinetics of Phase Separation
Award ID(s):
2146168 2305129
PAR ID:
10490847
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
146
Issue:
8
ISSN:
0002-7863
Format(s):
Medium: X Size: p. 5383-5392
Size(s):
p. 5383-5392
Sponsoring Org:
National Science Foundation
More Like this
  1. We develop a novel optimal control algorithm to change the phase of an oscillator using a minimum energy input, which also minimizes the oscillator’s transversal distance to the uncontrolled periodic orbit. Our algorithm uses a two-dimensional reduction technique based on both isochrons and isostables. We develop a novel method to eliminate cardiac alternans by connecting our control algorithm with the underlying physiological problem. We also describe how the devised algorithm can be used for spike timing control which can potentially help with motor symptoms of essential and parkinsonian tremor, and aid in treating jet lag. To demonstrate the advantages of this algorithm, we compare it with a previously proposed optimal control algorithm based on standard phase reduction for the Hopf bifurcation normal form, and models for cardiac pacemaker cells, thalamic neurons, and circadian gene regulation cycle in the suprachiasmatic nucleus. We show that our control algorithm is effective even when a large phase change is required or when the nontrivial Floquet multiplier is close to unity; in such cases, the previously proposed control algorithm fails. 
    more » « less
  2. Abstract Polarimetric variables such as differential phase ΦDPand its range derivative, specific differential phaseKDP, contain useful information for improving quantitative precipitation estimation (QPE) and microphysics retrieval. However, the usefulness of the current operationally utilized estimation method ofKDPis limited by measurement error and artifacts resulting from the differential backscattering phaseδ. The contribution ofδcan significantly influence the ΦDPmeasurements and therefore negatively affect theKDPestimates. Neglecting the presence ofδwithin non-Rayleigh scattering regimes has also led to the adoption of incorrect terminology regarding signatures seen within current operationalKDPestimates implying associated regions of unrealistic liquid water content. A new processing method is proposed and developed to estimate bothKDPandδusing classification and linear programming (LP) to reduce bias inKDPestimates caused by theδcomponent. It is shown that by applying the LP technique specifically to the rain regions of Rayleigh scattering along a radial profile, accurate estimates of differential propagation phase, specific differential phase, and differential backscattering phase can be retrieved within regions of both Rayleigh and non-Rayleigh scattering. This new estimation method is applied to cases of reported hail and tornado debris, and the LP results are compared to the operationally utilized least squares fit (LSF) estimates. The results show the potential use of the differential backscattering phase signature in the detection of hail and tornado debris. 
    more » « less