Abstract We present both the observation and the magnetohydrodynamics (MHD) simulation of the M2.4 flare (SOL2017-07-14T02:09) of NOAA active region (AR) 12665 with a goal to identify its initiation mechanism. The observation by the Atmospheric Image Assembly (AIA) on board the Solar Dynamics Observatory (SDO) shows that the major topology of the AR is a sigmoidal configuration associated with a filament/flux rope. A persistent emerging magnetic flux and the rotation of the sunspot in the core region were observed with Magnetic Imager (HMI) on board the SDO on the timescale of hours before and during the flare, which may provide free magnetic energy needed for the flare/coronal mass ejection (CME). A high-lying coronal loop is seen moving outward in AIA EUV passbands, which is immediately followed by the impulsive phase of the flare. We perform an MHD simulation using the potential magnetic field extrapolated from the measured pre-flare photospheric magnetic field as initial conditions and adopting the observed sunspot rotation and flux emergence as the driving boundary conditions. In our simulation, a sigmoidal magnetic structure and an overlying magnetic flux rope (MFR) form as a response to the imposed sunspot rotation, and the MFR rises to erupt like a CME. These simulation results in good agreement with the observation suggest that the formation of the MFR due to the sunspot rotation and the resulting torus and kink instabilities were essential to the initiation of this flare and the associated coronal mass ejection. 
                        more » 
                        « less   
                    
                            
                            Solar Eruptions Triggered by Flux Emergence below or near a Coronal Flux Rope
                        
                    
    
            Abstract Observations have shown a clear association of filament/prominence eruptions with the emergence of magnetic flux in or near filament channels. Magnetohydrodynamic (MHD) simulations have been employed to systematically study the conditions under which such eruptions occur. These simulations to date have modeled filament channels as 2D flux ropes or 3D uniformly sheared arcades. Here we present MHD simulations of flux emergence into a more realistic configuration consisting of a bipolar active region containing a line-tied 3D flux rope. We use the coronal flux-rope model of Titov et al. as the initial condition and drive our simulations by imposing boundary conditions extracted from a flux emergence simulation by Leake et al. We identify three mechanisms that determine the evolution of the system: (i) reconnection displacing footpoints of field lines overlying the coronal flux rope, (ii) changes of the ambient field due to the intrusion of new flux at the boundary, and (iii) interaction of the (axial) electric currents in the preexisting and newly emerging flux systems. The relative contributions and effects of these mechanisms depend on the properties of the preexisting and emerging flux systems. Here we focus on the location and orientation of the emerging flux relative to the coronal flux rope. Varying these parameters, we investigate under which conditions an eruption of the latter is triggered. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1854790
- PAR ID:
- 10490998
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 962
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 149
- Size(s):
- Article No. 149
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Coronal mass ejections (CMEs) from pseudostreamers represent a significant fraction of large-scale eruptions from the Sun. In some cases, these CMEs take a narrow jet-like form reminiscent of coronal jets; in others, they have a much broader fan-shaped morphology like CMEs from helmet streamers. We present results from a magnetohydrodynamic simulation of a broad pseudostreamer CME. The early evolution of the eruption is initiated through a combination of breakout interchange reconnection at the overlying null point and ideal instability of the flux rope that forms within the pseudostreamer. This stage is characterized by a rolling motion and deflection of the flux rope toward the breakout current layer. The stretching out of the strapping field forms a flare current sheet below the flux rope; reconnection onset there forms low-lying flare arcade loops and the two-ribbon flare footprint. Once the CME flux rope breaches the rising breakout current layer, interchange reconnection with the external open field disconnects one leg from the Sun. This induces a whip-like rotation of the flux rope, generating the unstructured fan shape characteristic of pseudostreamer CMEs. Interchange reconnection behind the CME releases torsional Alfvén waves and bursty dense outflows into the solar wind. Our results demonstrate that pseudostreamer CMEs follow the same overall magnetic evolution as coronal jets, although they present different morphologies of their ejecta. We conclude that pseudostreamer CMEs should be considered a class of eruptions that are distinct from helmet-streamer CMEs, in agreement with previous observational studies.more » « less
- 
            null (Ed.)Aims. Flux ropes are generally believed to be core structures of solar eruptions that are significant for the space weather, but their formation mechanism remains intensely debated. We report on the formation of a tiny flux rope beneath clusters of active region loops on 2018 August 24. Methods. Combining the high-quality multiwavelength observations from multiple instruments, we studied the event in detail in the photosphere, chromosphere, and corona. Results. In the source region, the continual emergence of two positive polarities (P1 and P2) that appeared as two pores (A and B) is unambiguous. Interestingly, P2 and Pore B slowly approached P1 and Pore A, implying a magnetic flux convergence. During the emergence and convergence, P1 and P2 successively interacted with a minor negative polarity (N3) that emerged, which led to a continuous magnetic flux cancellation. As a result, the overlying loops became much sheared and finally evolved into a tiny twisted flux rope that was evidenced by a transient inverse S-shaped sigmoid, the twisted filament threads with blueshift and redshift signatures, and a hot channel. Conclusions. All the results show that the formation of the tiny flux rope in the center of the active region was closely associated with the continuous magnetic flux emergence, convergence, and cancellation in the photosphere. Hence, we suggest that the magnetic flux emergence, convergence, and cancellation are crucial for the formation of the tiny flux rope.more » « less
- 
            Abstract Two new schemes for identifying field lines involved in eruptions, the r -scheme and q -scheme, are proposed to analyze the eruptive and confined nature of solar flares, as extensions to the original r m scheme proposed in Lin et al. Motivated by three solar flares originating from NOAA Active Region 12192 that are misclassified by r m , we introduce refinements to the r -scheme employing the “magnetic twist flux” to approximate the force balance acting on a magnetic flux rope (MFR); in the q -scheme, the reconnected field is represented by those field lines that anchor in the flare ribbons. Based on data obtained by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, the coronal magnetic field for 51 flares larger than M5.0 class, from 29 distinct active regions, is constructed using a nonlinear force-free field extrapolation model. Statistical analysis based on linear discriminant function analysis is then performed, revealing that despite both schemes providing moderately successful classifications for the 51 flares, the coronal mass ejection-eruptivity classification for the three target events can only be improved with the q -scheme. We find that the highly twisted field lines and the flare-ribbon field lines have equal average force-free constant α , but all of the flare-ribbon-related field lines are shorter than 150 Mm in length. The findings lead us to conclude that it is challenging to distinguish the MFR from the ambient magnetic field using any quantity based on common magnetic nonpotentiality measures.more » « less
- 
            Abstract Onestrongmagnetic cloud (MC) with a magnetic field magnitude reaching ∼40 nT at 1 au during 2012 June 16–17 is examined in association with a preexisting magnetic flux rope (MFR) identified on the Sun. The MC is characterized by a quasi-three-dimensional (3D) flux rope model based on in situ measurements from the Wind spacecraft. The contents of the magnetic flux and other parameters are quantified. In addition, a correlative study with the corresponding measurements of the same structure crossed by the Venus Express (VEX) spacecraft at a heliocentric distance of 0.7 au and with an angular separation of ∼6° in longitude is performed to validate the MC modeling results. The spatial variation between the Wind and VEX magnetic field measurements is attributed to the 3D configuration of the structure appearing as a knotted bundle of flux. A comparison of the magnetic flux contents between the MC and the preexisting MFR on the Sun indicates that the 3D reconnection process accompanying an M1.9 flare may correspond to the magnetic reconnection between the field lines of the preexisting MFR rooted in the opposite polarity footpoints. Such a process reduces the amount of the axial magnetic flux in the erupted flux rope, by approximately 50%, in this case.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
