skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Advances in complex oxide quantum materials through new approaches to molecular beam epitaxy
Abstract Molecular beam epitaxy (MBE), a workhorse of the semiconductor industry, has progressed rapidly in the last few decades in the development of novel materials. Recent developments in condensed matter and materials physics have seen the rise of many novel quantum materials that require ultra-clean and high-quality samples for fundamental studies and applications. Novel oxide-based quantum materials synthesized using MBE have advanced the development of the field and materials. In this review, we discuss the recent progress in new MBE techniques that have enabled synthesis of complex oxides that exhibit ‘quantum’ phenomena, including superconductivity and topological electronic states. We show how these techniques have produced breakthroughs in the synthesis of 4d and 5d oxide films and heterostructures that are of particular interest as quantum materials. These new techniques in MBE offer a bright future for the synthesis of ultra-high quality oxide quantum materials.  more » « less
Award ID(s):
2045993
PAR ID:
10491017
Author(s) / Creator(s):
;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics D: Applied Physics
Volume:
57
Issue:
19
ISSN:
0022-3727
Format(s):
Medium: X Size: Article No. 193001
Size(s):
Article No. 193001
Sponsoring Org:
National Science Foundation
More Like this
  1. Ultra-high purity elemental sources have long been considered a prerequisite for obtaining low impurity concentrations in compound semiconductors in the world of molecular beam epitaxy (MBE) since its inception in 1968. However, we demonstrate that a “dirty” solid precursor, ruthenium(III) acetylacetonate [also known as Ru(acac)3], can yield single-phase, epitaxial, and superconducting Sr2RuO4 films with the same ease and control as III–V MBE. A superconducting transition was observed at ∼0.9 K, suggesting a low defect density and a high degree of crystallinity in these films. In contrast to the conventional MBE, which employs the ultra-pure Ru metal evaporated at ∼2000 °C as a Ru source, along with reactive ozone to obtain Ru → Ru4+ oxidation, the use of the Ru(acac)3 precursor significantly simplifies the MBE process by lowering the temperature for Ru sublimation (less than 200 °C) and by eliminating the need for ozone. Combining these results with the recent developments in hybrid MBE, we argue that leveraging the precursor chemistry will be necessary to realize next-generation breakthroughs in the synthesis of atomically precise quantum materials. 
    more » « less
  2. The ability to synthesize new materials with unique functionalities has provided the foundation for modern electronics and for new discoveries. Oxide molecular beam epitaxy (MBE) has played a vital role in this endeavor. In this chapter, key fundamental concepts discussing the physics of complex oxides, followed by the important role of oxide MBE, are presented. Recent technical advances, current and potential challenges, and advantages of an oxide MBE are reviewed. Important factors responsible for electronic-quality oxide films – including of those metals that are difficult to oxidize – are discussed, with particular emphasis on new developments with radical-based MBE approaches. Taking analogy from III–V MBE, the current status and future prospects of oxide MBE are discussed in developing oxide electronics operating at room temperature. 
    more » « less
  3. Perovskite oxides such as LaFeO3 are a well-studied family of materials that possess a wide range of useful and novel properties. Successfully synthesizing perovskite oxide samples usually requires a significant number of growth attempts and a detailed film characterization on each sample to find the optimal growth window of a material. The most common real-time in situ diagnostic technique available during molecular beam epitaxy (MBE) synthesis is reflection high-energy electron diffraction (RHEED). Conventional use of RHEED allows a highly experienced operator to determine growth rate by monitoring intensity oscillations and make some qualitative observations during growth, such as recognizing the sample has become amorphous or recognizing that large islands have formed on the surface. However, due to a lack of theoretical understanding of the diffraction patterns, finer, more precise levels of observations are challenging. To address these limitations, we implement new data analytics techniques in the growth of three LaFeO3 samples on Nb-doped SrTiO3 by MBE. These techniques improve our ability to perform unsupervised machine learning using principal component analysis (PCA) and k-means clustering by using drift correction to overcome sample or stage motion during growth and intensity transformations that highlight more subtle features in the images such as Kikuchi bands. With this approach, we enable the first demonstration of PCA and k-means across multiple samples, allowing for quantitative comparison of RHEED videos for two LaFeO3 film samples. These capabilities set the stage for real-time processing of RHEED data during growth to enable machine learning-accelerated film synthesis. 
    more » « less
  4. Abstract Transparent oxide thin film transistors (TFTs) are an important ingredient of transparent electronics. Their fabrication at the back‐end‐of‐line (BEOL) opens the door to novel strategies to more closely integrate logic with memory for data‐intensive computing architectures that overcome the scaling challenges of today's integrated circuits. A recently developed variant of molecular‐beam epitaxy (MBE) called suboxide MBE (S‐MBE) is demonstrated to be capable of growing epitaxial In2O3at BEOL temperatures with unmatched crystal quality. The fullwidth at halfmaximum of the rocking curve is 0.015° and, thus, ≈5x narrower than any reports at any temperature to date and limited by the substrate quality. The key to achieving these results is the provision of an In2O beam by S‐MBE, which enables growth in adsorption control and is kinetically favorable. To benchmark this deposition method for TFTs, rudimentary devices were fabricated. 
    more » « less
  5. Plasmonic nanostructures and metasurfaces are appealing hosts for investigation of novel optical devices and exploration of new frontiers in physical/optical processes and materials research. Recent studies have shown that these structures hold the promise of greater control over the optical and electronic properties of quantum emitters, offering a unique horizon for ultra-fast spin-controlled optical devices, quantum computation, laser systems, and sensitive photodetectors. In this Perspective, we discuss how heterostructures consisting of metal oxides, metallic nanoantennas, and dielectrics can offer a material platform wherein one can use the decay of plasmons and their near fields to passivate the defect sites of semiconductor quantum dots while enhancing their radiative decay rates. Such a platform, called functional metal-oxide plasmonic metasubstrates (FMOPs), relies on formation of two junctions at very close vicinity of each other. These include an Au/Si Schottky junction and an Si/Al oxide charge barrier. Such a double junction allows one to use hot electrons to generate a field-passivation effect, preventing migration of photo-excited electrons from quantum dots to the defect sites. Prospects of FMOP, including impact of enhancement exciton–plasmon coupling, collective transport of excitation energy, and suppression of quantum dot fluorescence blinking, are discussed. 
    more » « less