skip to main content


This content will become publicly available on August 22, 2024

Title: Mechanical reinforcement of waterborne latex pressure‐sensitive adhesives with polymer‐grafted nanoparticles
Abstract

Waterborne pressure sensitive adhesives (PSAs) consisting of polymer microparticle emulsions (i.e. latex) are more commonly used in commercial applications than solvent‐borne alternatives, as the use of water as a suspension medium provides better consumer safety and reduces environmental impact. However, the lower mechanical performance of waterborne PSAs prevents their use in applications requiring permanent adhesion or strong bonding between substrates. This reduction in mechanical strength is often attributed to void spaces that form during water evaporation and coalescence of the latex particles, and thus a potential strategy to improve PSA strength would be to add filler materials to occupy these voids. Fundamental studies investigating how interfacial interactions between the latex and fillers affect the collective strength of the films would enable better design of adhesive compositions to tailor PSA mechanical properties. Here we report the use of polymer brush‐grafted nanoparticles (PGNPs) as a means of mechanically reinforcing the PSAs, and determine how different aspects of the particle and polymer brush designs enable this improvement in adhesive performance. The PGNPs investigated here are intentionally designed to phase segregate into the aqueous phase of the initial latex suspension, which allows them to both fill free pore volume and also form multivalent supramolecular interactions with the latex particles to form polymer bridges that improve the interconnectivity of the final film. These studies provide insight into potential design strategies for tuning PSA properties with PGNPs, and enable up to 32% improvements to the cohesive strength of the PSAs without the typical deterioration of adhesive strength observed in PSAs using non‐brush‐coated particle fillers.

 
more » « less
NSF-PAR ID:
10491058
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science
Volume:
62
Issue:
4
ISSN:
2642-4150
Format(s):
Medium: X Size: p. 743-752
Size(s):
["p. 743-752"]
Sponsoring Org:
National Science Foundation
More Like this
  1. The utilization of multifunctional composite materials presents significant advantages in terms of system efficiency, cost-effectiveness, and miniaturization, making them highly valuable for a wide range of industrial applications. One approach to harness the multifunctionality of carbon fiber reinforced polymer (CFRP) is to integrate it with a secondary material to form a hybrid composite. In our previous research, we explored the use of carbonaceous material derived from coconut shells as a sustainable alternative to inorganic fillers, aiming to enhance the out-of-plane mechanical performance of CFRP. In this study, our focus is to investigate the influence of carbonized coconut shell particles on the non-structural properties of CFRP, specifically electromagnetic interference (EMI) shielding, thermal stability, and water absorption resistance. The carbonized material was prepared by thermal processing at 400 °C. Varying proportions of carbonized material, ranging from 1% to 5% by weight, were thoroughly mixed with epoxy resin to form the matrix used for impregnating woven carbon fabric with a volume fraction of 29%. Through measurements of scattering parameters, we found that the hybrid composites with particle loadings up to 3% exhibited EMI shielding effectiveness suitable for industrial applications. Also, incorporating low concentrations of carbonized particle to CFRP enhances the thermal stability of hybrid CFRP composites. However, the inclusion of carbonized particle to CFRP has a complex effect on the glass transition temperature. Even so, the hybrid composite with 2% particle loading exhibits the highest glass transition temperature and lowest damping factor among the tested variations. Furthermore, when subjected to a 7-day water immersion test, hybrid composites with 3% or less amount of carbonized particle showed the least water absorption. The favorable outcome can be attributed to good interfacial bonding at the matrix/fiber interface. Conversely, at higher particle concentrations, aggregation of particles and formation of interfacial and internal pores was observed, ultimately resulting in deteriorated measured properties. The improved non-structural functionalities observed in these biocomposites suggest the potential for a more sustainable and cost-effective alternative to their inorganic-based counterparts. This advancement in multifunctional composites could pave the way for enhanced applications of biocomposites in various industries.

     
    more » « less
  2. Abstract

    Latex, an aqueous dispersion of sub-micron polymer particles, is widely used as polymer binder in waterborne coatings and adhesives. Drying of a latex is inhomogeneous, during which the spatial distribution of particles is non-uniform and changes with time, usually resulting in a compromise of the integrity of a dried film. To study drying inhomogeneity of latex, we developed a system integrating optical coherence tomography (OCT) with gravimetric and video analysis (OCT-Gravimetry-Video method) to non-destructively monitor the drying process of non-film-forming latexes consisting of hard polystyrene spheres over time. OCT structural and speckle images of the latex’s internal structure show the packing process of particles, the detachment of latex and the formation of apparent shear bands in cross-sectional views. Video recordings show the formation of cracks and the propagation of the drying boundary in the horizontal direction. The drying curve, measured by gravimetry, shows the drying rate and the water content of the latex at each drying stage. Furthermore, we find that the particle size affects packing and cracking phenomena remarkably. The OCT-Gravimetry-Video method serves as a general and robust approach to investigate the drying process of waterborne latex system. This method can be employed for fundamental studies of colloids and for evaluations of industrial latex products.

     
    more » « less
  3. We report a colloid–polymer model system with tunable bridging interactions for microscopic studies of structure and dynamics using confocal imaging. The interactions between trifluoroethyl methacrylate-co-tert-butyl methacrylate copolymer particles and poly(acrylic acid) (PAA) polymers were controllable via polymer concentration and pH. The strength of adsorption of PAA on the particles, driven by pH-dependent interactions with polymer brush stabilizers on the particle surfaces, was tuned via solution pH. Particle–polymer suspensions formulated at low pH, where polymers strongly adsorbed to the particles, contained clusters or weak gels at particle volume fractions of ϕ = 0.15 and ϕ = 0.40. At high pH, where the PAA only weakly adsorbed to the particle surface, particles largely remained dispersed, and the suspensions behaved as a dense fluid. The ability to visualize the suspension structure is likely to provide insight into the role of polymer-driven bridging interactions in the behavior of colloidal suspensions.

     
    more » « less
  4. Abstract

    Filler aggregation in polymer matrix nanocomposites leads to inhomogeneity in particle distribution and deterioration of mechanical properties. The use of polymer‐grafted nanoparticles (PGNPs) with polymers directly attached to the particle surfaces precludes aggregation of the filler. However, solids composed of PGNPs are mechanically weak unless the grafted chains are long enough to form entanglements between particles, and requiring long grafts limits the achievable filler density of the nanocomposite. In this work, long, entangled grafts are replaced with short reactive polymers that form covalent crosslinks between particles. Crosslinkable PGNPs, referred to as XNPs, can be easily processed from solution and subsequently cured to yield a highly filled yet mechanically robust composite. In this specific instance, silica nanoparticles are grafted with poly(glycidyl methacrylate), cast into films, and crosslinked with multifunctional amines at elevated temperatures. Indentation and scratch experiments show significant enhancement of hardness, modulus, and scratch resistance compared to non‐crosslinked PGNPs and to crosslinked polymer films without nanoparticle reinforcement. Loadings of up to 57 wt% are achieved while yielding uniform films that deform locally in a predominantly elastic manner. XNPs therefore potentially allow for the formulation of robust nanocomposites with a high level of functionality imparted by the selected filler particles.

     
    more » « less
  5. In this Account, we describe our recent work in developing polymer brush coatings for nanoparticles, which we use to modulate particle behavior on demand, select specific nanoscopic architectures to form, and bolster traditional bulk polymers to form stronger materials by design. Distinguished by the polymer type and capabilities, three classes of nanoparticles are discussed here: nanocomposite tectons (NCTs), which use synthetic polymers end-functionalized with supramolecular recognition groups capable of directing their assembly; programmable atom equivalents (PAEs) containing brushes of synthetic DNA that employ Watson–Crick base pairing to encode particle binding interactions; and cross-linkable nanoparticles (XNPs) that can both stabilize nanoparticles in solution and polymer matrices and subsequently form multivalent cross-links to strengthen polymer composites. We describe the formation of these brushes through “grafting-from” and “grafting-to” strategies and illustrate aspects that are important for future advancement. We also examine the new capabilities brushes provide, looking closely at dynamic polymer processes that provide control over the assembly state of particles. Finally, we provide a brief overview of the technological applications of nanoparticles with polymer brushes, focusing on the integration of nanoparticles into traditional materials and the processing of nanoparticles into bulk solids. 
    more » « less