skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Bayesian approach for investigating the pharmacogenetics of combination antiretroviral therapy in people with HIV
Summary Combination antiretroviral therapy (ART) with at least three different drugs has become the standard of care for people with HIV (PWH) due to its exceptional effectiveness in viral suppression. However, many ART drugs have been reported to associate with neuropsychiatric adverse effects including depression, especially when certain genetic polymorphisms exist. Pharmacogenetics is an important consideration for administering combination ART as it may influence drug efficacy and increase risk for neuropsychiatric conditions. Large-scale longitudinal HIV databases provide researchers opportunities to investigate the pharmacogenetics of combination ART in a data-driven manner. However, with more than 30 FDA-approved ART drugs, the interplay between the large number of possible ART drug combinations and genetic polymorphisms imposes statistical modeling challenges. We develop a Bayesian approach to examine the longitudinal effects of combination ART and their interactions with genetic polymorphisms on depressive symptoms in PWH. The proposed method utilizes a Gaussian process with a composite kernel function to capture the longitudinal combination ART effects by directly incorporating individuals’ treatment histories, and a Bayesian classification and regression tree to account for individual heterogeneity. Through both simulation studies and an application to a dataset from the Women’s Interagency HIV Study, we demonstrate the clinical utility of the proposed approach in investigating the pharmacogenetics of combination ART and assisting physicians to make effective individualized treatment decisions that can improve health outcomes for PWH.  more » « less
Award ID(s):
2112943
PAR ID:
10491231
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Biostatistics
Volume:
25
Issue:
4
ISSN:
1465-4644
Format(s):
Medium: X Size: p. 1034-1048
Size(s):
p. 1034-1048
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Although combination antiretroviral therapy (ART) with three or more drugs is highly effective in suppressing viral load for people with HIV (human immunodeficiency virus), many ART agents may exacerbate mental health‐related adverse effects including depression. Therefore, understanding the effects of combination ART on mental health can help clinicians personalize medicine with less adverse effects to avoid undesirable health outcomes. The emergence of electronic health records offers researchers' unprecedented access to HIV data including individuals' mental health records, drug prescriptions, and clinical information over time. However, modeling such data is challenging due to high dimensionality of the drug combination space, the individual heterogeneity, and sparseness of the observed drug combinations. To address these challenges, we develop a Bayesian nonparametric approach to learn drug combination effect on mental health in people with HIV adjusting for sociodemographic, behavioral, and clinical factors. The proposed method is built upon the subset‐tree kernel that represents drug combinations in a way that synthesizes known regimen structure into a single mathematical representation. It also utilizes a distance‐dependent Chinese restaurant process to cluster heterogeneous populations while considering individuals' treatment histories. We evaluate the proposed approach through simulation studies, and apply the method to a dataset from the Women's Interagency HIV Study, showing the clinical utility of our model in guiding clinicians to prescribe informed and effective personalized treatment based on individuals' treatment histories and clinical characteristics. 
    more » « less
  2. Objective:While modern antiretroviral therapy (ART) is highly effective and safe, depressive symptoms have been associated with certain ART drugs. We examined the association between common ART regimens and depressive symptoms in women with HIV (WWH) with a focus on somatic vs. nonsomatic symptoms. Design:Analysis of longitudinal data from the Women's Interagency HIV Study. Methods:Participants were classified into three groups based on the frequency of positive depression screening (CES-D ≥16): chronic depression (≥50% of visits since study enrollment), infrequent depression (<50% of visits), and never depressed (no visits). Novel Bayesian machine learning methods building upon a subset-tree kernel approach were developed to estimate the combined effects of ART regimens on depressive symptoms in each group after covariate adjustment. Results:The analysis included 1538 WWH who participated in 12 924 (mean = 8.4) visits. The mean age was 49.9 years, 72% were Black, and 14% Hispanic. In the chronic depression group, combinations including tenofovir alafenamide and cobicistat-boosted elvitegravir and/or darunavir were associated with greater somatic symptoms of depression, whereas those combinations containing tenofovir disoproxil fumarate and efavirenz or rilpivirine were associated with less somatic depressive symptoms. ART was not associated with somatic symptoms in the infrequent depression or never depressed groups. ART regimens were not associated with nonsomatic symptoms in any group. Conclusions:Specific ART combinations are associated with somatic depressive symptoms in WWH with chronic depression. Future studies should consider specific depressive symptoms domains as well as complete drug combinations when assessing the relationship between ART and depression. 
    more » « less
  3. AIDS is a syndrome caused by the HIV. During the progression of AIDS, a patient's immune system is weakened, which increases the patient's susceptibility to infections and diseases. Although antiretroviral drugs can effectively suppress HIV, the virus mutates very quickly and can become resistant to treatment. In addition, the virus can also become resistant to other treatments not currently being used through mutations, which is known in the clinical research community as cross-resistance. Since a single HIV strain can be resistant to multiple drugs, this problem is naturally represented as a multilabel classification problem. Given this multilabel relationship, traditional single-label classification methods often fail to effectively identify the drug resistances that may develop after a particular virus mutation. In this work, we propose a novel multilabel Robust Sample Specific Distance (RSSD) method to identify multiclass HIV drug resistance. Our method is novel in that it can illustrate the relative strength of the drug resistance of a reverse transcriptase (RT) sequence against a given drug nucleoside analog and learn the distance metrics for all the drug resistances. To learn the proposed RSSDs, we formulate a learning objective that maximizes the ratio of the summations of a number of ℓ1-norm distances, which is difficult to solve in general. To solve this optimization problem, we derive an efficient, nongreedy iterative algorithm with rigorously proved convergence. Our new method has been verified on a public HIV type 1 drug resistance data set with over 600 RT sequences and five nucleoside analogs. We compared our method against several state-of-the-art multilabel classification methods, and the experimental results have demonstrated the effectiveness of our proposed method. 
    more » « less
  4. Cognitive complications persist in antiretroviral therapy(ART)-treated people with HIV. However, the pattern and severity of domain- specific cognitive performance is variable and may be exacerbated by ART-mediated neurotoxicity. 929 women with HIV(WWH) from the Women’s Interagency HIV Study who were classified into subgroups based on sociodemographic and longitudinal behavioral and clinical data using semi-parametric latent class trajectory modelling. Five subgroups were comprised of: 1) well-controlled HIV with vascular comorbidities(n = 116); 2) profound HIV legacy effects(CD4 nadir <250 cells/μL; n = 275); 3) primarily <45 year olds with hepatitis C(n = 165); 4) primarily 35–55 year olds(n = 244), and 5) poorly-controlled HIV/substance use(n = 129). Within each subgroup, we fitted a constrained continuation ratio model via penalized maximum likelihood to examine adjusted associations between recent ART agents and cognition. Most drugs were not associated with cognition. However, among the few drugs, non- nucleoside reverse transcriptase inhibitor (NNRTIs) and protease inhibitors(PIs) were most commonly associated with cognition, followed by nucleoside reverse transcriptase inhibitors(NRTIs) and integrase inhibitors(IIs). Directionality of ART-cognition associa- tions varied by subgroup. Better psychomotor speed and fluency were associated with ART for women with well-controlled HIV with vascular comorbidities. This pattern contrasts women with profound HIV legacy effects for whom poorer executive function and fluency were associated with ART. Motor function was associated with ART for younger WWH and primarily 35–55 year olds. Memory was associated with ART only for women with poorly-controlled HIV/substance abuse. Findings demonstrate interindividual variability in ART-cognition associations among WWH and highlight the importance of considering sociodemographic, clinical, and behavioral factors as an underlying contributors to cognition. 
    more » « less
  5. Acquired immunodeficiency syndrome (AIDS) is a syndrome caused by the human immunodeficiency virus (HIV). During the progression of AIDS, a patient’s the immune system is weakened, which increases the patient’s susceptibility to infections and diseases. Although antiretroviral drugs can effectively suppress HIV, the virus mutates very quickly and can become resistant to treatment. In addition, the virus can also become resistant to other treatments not currently being used through mutations, which is known in the clinical research community as cross-resistance. Since a single HIV strain can be resistant to multiple drugs, this problem is naturally represented as a multi-label classification problem. Given this multi-class relationship, traditional single-label classification methods usually fail to effectively identify the drug resistances that may develop after a particular virus mutation. In this paper, we propose a novel multi-label Robust Sample Specific Distance (RSSD) method to identify multi-class HIV drug resistance. Our method is novel in that it can illustrate the relative strength of the drug resistance of a reverse transcriptase sequence against a given drug nucleoside analogue and learn the distance metrics for all the drug resistances. To learn the proposed RSSDs, we formulate a learning objective that maximizes the ratio of the summations of a number of ℓ1-norm distances, which is difficult to solve in general. To solve this optimization problem, we derive an efficient, non-greedy, iterative algorithm with rigorously proved convergence. Our new method has been verified on a public HIV-1 drug resistance data set with over 600 RT sequences and five nucleoside analogues. We compared our method against other state-of-the-art multi-label classification methods and the experimental results have demonstrated the effectiveness of our proposed method. 
    more » « less