skip to main content

Title: An Evaluation Platform for Channel Estimation in MIMO Systems
Multiple-input multiple-outputs (MIMO) systems are integral to the implementation of the current fifth-generation (5G) and beyond wireless networks. Accurate channel state information (CSI) is imperative to a MIMO system for its optimal performance. In this work, we develop an end-to-end software evaluation platform for the channel estimation process in a MIMO system. With this platform, different channel estimation and reconstruction processes, as well as precoding methods can be implemented and evaluated. Channel reconstruction error and transmission bit error rate are chosen metrics in the current implementation. Direct channel estimation with the least square method, and CSI feedback methods with compressive sensing and deep-learning approaches are tested to demonstrate the evaluation platform  more » « less
Award ID(s):
2139520 2139569 2139508 2336234
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Date Published:
Journal Name:
NAECON 2023 - IEEE National Aerospace and Electronics Conference
Page Range / eLocation ID:
244 to 248
Medium: X
Dayton, OH, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Channel state information (CSI) plays a vital role in scheduling and capacity-approaching transmission optimization of massive MIMO communication systems. In frequency division duplex (FDD) MIMO systems, forward link CSI reconstruction at transmitter relies on CSI feedback from receiving nodes and must carefully weigh the tradeoff between reconstruction accuracy and feedback bandwidth. Recent application of recurrent neural networks (RNN) has demonstrated promising results of massive MIMO CSI feedback compression. However, the cost of computation and memory associated with RNN deep learning remains high. In this work, we exploit channel temporal coherence to improve learning accuracy and feedback efficiency. Leveraging a Markovian model, we develop a deep convolutional neural network (CNN)-based framework called MarkovNet to efficiently encode CSI feedback to improve accuracy and efficiency. We explore important physical insights including spherical normalization of input data and deep learning network optimizations in feedback compression. We demonstrate that MarkovNet provides a substantial performance improvement and computational complexity reduction over the RNN-based work.We demonstrate MarkovNet’s performance under different MIMO configurations and for a range of feedback intervals and rates. CSI recovery with MarkovNet outperforms RNN-based CSI estimation with only a fraction of computational cost. 
    more » « less
  2. Wireless links using massive MIMO transceivers are vital for next generation wireless communications networks. Precoding in Massive MIMO transmission requires accurate downlink channel state information (CSI). Many recent works have effectively applied deep learning (DL) to jointly train UE-side compression networks for delay domain CSI and a BS-side decoding scheme. Vitally, these works assume that the full delay domain CSI is available at the UE, but in reality, the UE must estimate the delay domain based on a limited number of frequency domain pilots. In this work, we propose a linear pilot-to-delay estimator (P2DE) that acquires the truncated delay CSI via sparse frequency pilots. We show the accuracy of the P2DE under frequency downsampling, and we demonstrate the P2DE’s efficacy when utilized with existing CSI estimation networks. Additionally, we propose to use trainable compressed sensing (CS) networks in a differential encoding network for time-varying CSI estimation, and we propose a new network, MarkovNet-ISTA-ENet (MN-IE), which combines a CS network for initial CSI estimation and multiple autoencoders to estimate the error terms. We demonstrate that MN-IE has better asymptotic performance than networks comprised of only one type of network. 
    more » « less
  3. Channel state information (CSI) reporting is important for multiple-input multiple-output (MIMO) wireless transceivers to achieve high capacity and energy efficiency in frequency division duplex (FDD) mode. CSI reporting for massive MIMO systems could consume large bandwidth and degrade spectrum efficiency. Deep learning (DL)-based CSI reporting integrated with channel characteristics has demonstrated success in improving CSI compression and recovery. To further improve the encoding efficiency of CSI feedback, we develop an efficient DL-based compression framework CQNet to jointly tackle CSI compression, codeword quantization, and recovery under the bandwidth constraint. CQNet is directly compatible with other DL-based CSI feedback works for further enhancement. We propose a more efficient quantization scheme in the radial coordinate by introducing a novel magnitude-adaptive phase quantization framework. Compared with traditional CSI reporting, CQNet demonstrates superior CSI feedback efficiency and better CSI reconstruction accuracy. 
    more » « less
  4. This paper focuses on downlink channel state information (CSI) acquisition. A frequency division duplex (FDD) of massive MIMO system is considered. In such systems, the base station (BS) obtains the downlink CSI from the mobile users' feedback. A key consideration is to reduce the feedback overhead while ensuring that the BS accurately recovers the downlink CSI. Existing approaches often resort to dictionary-based or tensor/matrix decomposition techniques, which either exhibit unsatisfactory accuracy or induce heavy computational load at the mobile end. To circumvent these challenges, this work formulates the limited channel feedback problem as a quantized and compressed matrix recovery problem. The formulation presents a computationally challenging maximum likelihood estimation (MLE) problem. An ADMM algorithm leveraging existing harmonic retrieval tools is proposed to effectively tackle the optimization problem. Simulations show that the proposed method attains promising channel estimation accuracy, using a much smaller amount of feedback bits relative to existing methods. 
    more » « less
  5. Beam management is a strategy to unify beamforming and channel state information (CSI) acquisition with large antenna arrays in 5G. Codebooks serve multiple uses in beam management including beamforming reference signals, CSI reporting, and analog beam training. In this paper, we propose and evaluate a machine learning-refined codebook design process for extremely large multiple-input multiple- output (X-MIMO) systems. We propose a neural network and beam selection strategy to design the initial access and refinement codebooks using end-to-end learning from beamspace representations. The algorithm, called Extreme-Beam Management (X-BM), can significantly improve the performance of extremely large arrays as envisioned for 6G and capture realistic wireless and physical layer aspects. Our results show an 8dB improvement in initial access and overall effective spectral efficiency improvements compared to traditional codebook methods. 
    more » « less