Most animals communicate using complex signals that convey information in multiple sensory modalities. Testing receiver responses to each signal in isolation as well as the composite signal provides crucial information about how receivers use and integrate information from complex signals.
Concept formation requires animals to learn and use abstract rules that transcend the characteristics of specific stimuli. Abstract concepts are often associated with high levels of cognitive sophistication, so there has been much interest in which species can form and use concepts. A key abstract concept is that of sameness and difference, where stimuli are classified as either
- Award ID(s):
- 2134910
- PAR ID:
- 10491365
- Publisher / Repository:
- Proceedings B
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 289
- Issue:
- 1979
- ISSN:
- 0962-8452
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Polistes fuscatus wasps have facial patterns that are visual signals of individual identity and cuticular hydrocarbons (CHCs) that are used for nestmate recognition. Because wasps learn the unique facial pattern of each nestmate, they could potentially use both visual and chemical signals to assess group membership. We test whetherP. fuscatus integrate information from visual and chemical signals when assessing conspecifics that approach their nest. We challenged wasps with conspecifics that had color patterns and CHCs of nestmates, color patterns of nestmates and CHCs of non‐nestmates, color patterns of non‐nestmates and CHCs of nestmates, and color patterns and CHCs of non‐nestmates. Wasps with non‐nestmate CHCs were treated aggressively, and wasps with nestmate CHCs were treated non‐aggressively, regardless of whether the wasps had nestmate or non‐nestmate color patterns. Therefore, wasps use chemical signals alone to identify nestmates versus non‐nestmates. Receivers do not integrate information from visual and chemical signals during assessment of potential intruders. Instead, visual and chemical signals convey different information and are used in different contexts. -
Adaptive behavior requires that organisms learn not only which stimuli tend to co-occur (e.g., whether stimulus A co-occurs with unpleasant stimulus B) but also how co-occurring stimuli are related (e.g., whether A starts or stops B). In a preregistered study ( N = 200 adults), we investigated whether sleep would promote adaptive evaluative choices requiring joint memories for stimulus co-occurrences and stimulus relations. Participants learned about hypothetical pharmaceutical products that either cause or prevent positive or negative health conditions, followed by measures of evaluative choices and explicit memory. After a 12-hr retention interval including either nocturnal sleep or daytime wake, participants completed the same measures a second time. Results showed that sleep strengthened the impact of causal product–condition relations on choices (revealed by multinomial modeling analyses) and enhanced memories for specific stimulus co-occurrences (revealed by memory preservation analyses). The findings suggest that sleep promotes adaptive evaluative choices via offline memory consolidation.
-
ABSTRACT Visual recognition of three-dimensional signals, such as faces, is challenging because the signals appear different from different viewpoints. A flexible but cognitively challenging solution is viewpoint-independent recognition, where receivers identify signals from novel viewing angles. Here, we used same/different concept learning to test viewpoint-independent face recognition in Polistes fuscatus, a wasp that uses facial patterns to individually identify conspecifics. We found that wasps use extrapolation to identify novel views of conspecific faces. For example, wasps identify a pair of pictures of the same wasp as the ‘same’, even if the pictures are taken from different views (e.g. one face 0 deg rotation, one face 60 deg rotation). This result is notable because it provides the first evidence of view-invariant recognition via extrapolation in an invertebrate. The results suggest that viewpoint-independent recognition via extrapolation may be a widespread strategy to facilitate individual face recognition.
-
Abstract How does the similarity between stimuli affect our ability to learn appropriate response associations for them? In typical laboratory experiments learning is investigated under somewhat ideal circumstances, where stimuli are easily discriminable. This is not representative of most real-life learning, where overlapping “stimuli” can result in different “rewards” and may be learned simultaneously (e.g., you may learn over repeated interactions that a specific dog is friendly, but that a very similar looking one isn’t). With two experiments, we test how humans learn in three stimulus conditions: one “best case” condition in which stimuli have idealized and highly discriminable visual and semantic representations, and two in which stimuli have overlapping representations, making them less discriminable. We find that, unsurprisingly, decreasing stimuli discriminability decreases performance. We develop computational models to test different hypotheses about how reinforcement learning (RL) and working memory (WM) processes are affected by different stimulus conditions. Our results replicate earlier studies demonstrating the importance of both processes to capture behavior. However, our results extend previous studies by demonstrating that RL, and not WM, is affected by stimulus distinctness: people learn slower and have higher across-stimulus value confusion at decision when stimuli are more similar to each other. These results illustrate strong effects of stimulus type on learning and demonstrate the importance of considering parallel contributions of different cognitive processes when studying behavior.
-
Abstract Signals and receiver responses often vary across a species’ geographic range. Effective communication requires a match between signal and receiver response, so there is much interest in the developmental mechanisms that maintain this link. Two potential mechanisms are genetic covariance between signal and receiver response and plasticity where individuals adjust their phenotype based on their partner’s phenotype. Here, we test how plasticity contributes to geographic variation in individual face recognition in Polistes fuscatus wasps. Previous work has shown that P. fuscatus from Michigan, USA (MI) have variable facial patterns used for individual recognition, while P. fuscatus from central Pennsylvania, USA (PA) lack variable facial patterns and are unable to learn individual conspecifics. We experimentally altered rearing environment, so wasps were either reared with their own population or in a common garden with wasps from both populations. Then, we tested the wasps’ capacity to learn and remember individual conspecific faces. Consistent with previous work, MI wasps reared with MI wasps were adept at learning conspecific faces, while PA wasps reared with PA wasps were unable to learn conspecific faces. However, MI and PA wasps reared in a common garden developed similar, intermediate capacity for individual face learning. These results indicate that individual face learning in Polistes wasps is highly plastic and responsive to the social environment. Plasticity in receiver responses may be a common mechanism mediating geographic differences in non-sexual signaling systems and may play a role in maintaining links between signals and receiver responses in geographically variable communication systems.