Vortex fiber nulling (VFN) is a technique for detecting and characterizing faint companions at small separations from their host star. A near-infrared (∼2.3
The Differential Speckle Survey Instrument (DSSI) was relocated to the Astrophysical Research Consortium 3.5 m telescope at Apache Point Observatory (APO) in early 2022. Here we present results from the first year of observations along with an updated instrument description for DSSI at APO, including a detailed description of a new internal slit mask assembly used to measure the instrument plate scale from first principles. Astrometric precision for DSSI at APO during this time was measured to be 2.06 ± 0.11 mas, with a photometric precision of 0.14 ± 0.04 mag. Results of 40 resolved binary systems are reported, including two that were previously unknown to be binaries: HIP 7535 and HIP 9603. We also present updated orbital fits for two systems: HIP 93903 and HIP 100714. Finally, we report updated or confirmed dispositions for five Kepler Objects of Interest (KOIs) that were previously explored in Colton et al., using speckle imaging to discern common proper motions pairs from line of sight companions: KOI-270, KOI-959, KOI-1613, KOI-1962, and KOI-3214AB.
more » « less- Award ID(s):
- 2206099
- PAR ID:
- 10491415
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 167
- Issue:
- 3
- ISSN:
- 0004-6256
- Format(s):
- Medium: X Size: Article No. 117
- Size(s):
- Article No. 117
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract μ m) VFN demonstrator mode was deployed on the Keck Planet Imager and Characterizer (KPIC) instrument at the Keck Observatory and presented earlier. In this Letter, we present the first VFN companion detections. Three targets, HIP 21543 Ab, HIP 94666 Ab, and HIP 50319 B, were detected with host–companion flux ratios between 70 and 430 at and within one diffraction beamwidth (λ /D ). We complement the spectra from KPIC VFN with flux ratio and position measurements from the CHARA Array to validate the VFN results and provide a more complete characterization of the targets. This Letter reports the first direct detection of these three M dwarf companions, yielding their first spectra and flux ratios. Our observations provide measurements of bulk properties such as effective temperatures, radial velocities, and , and verify the accuracy of the published orbits. These detections corroborate earlier predictions of the KPIC VFN performance, demonstrating that the instrument mode is ready for science observations. -
Abstract Stellar multiplicity is correlated with many stellar properties, yet multiplicity measurements have proven difficult for the M dwarfs—the most common type of star in our galaxy—due to their faintness and the fact that a reasonably complete inventory of later M dwarfs did not exist until recently. We have therefore carried out the Pervasive Overview of “Kompanions” of Every M dwarf in Our Neighborhood (POKEMON) survey, which made use of the Differential Speckle Survey Instrument on the 4.3 m Lowell Discovery Telescope, along with the NN-EXPLORE Exoplanet Stellar Speckle Imager on the 3.5 m WIYN telescope. The POKEMON sample is volume limited from M0V through M9V out to 15 pc, with additional brighter targets at larger distances. In total, 1125 targets were observed. New discoveries were presented in the first paper in the series. In this second paper in the series, we present all detected companions, gauge our astrometric and photometric precision, and compare our filtered and filterless speckle observations. We find that the majority (58.9%) of the companions we detect in our speckle images are not resolved in Gaia, demonstrating the need for high-resolution imaging in addition to long-term astrometric monitoring. Additionally, we find that the majority (73.2%) of simulated stellar companions would be detectable by our speckle observations. Specifically within 100 au, we find that 70.3% of simulated companions are recovered. Finally, we discuss future directions of the POKEMON survey.
-
Abstract We identify targets in the Kepler field that may be characterized by transit timing variations and are detectable by the Transiting Exoplanet Survey Satellite (TESS). Despite the reduced signal-to-noise ratio of TESS transits compared to Kepler, we recover 48 transits from 13 systems in Sectors 14, 15, 26, 40 and 41. We find strong evidence of a nontransiting perturber orbiting Kepler-396 (KOI-2672) and explore two possible cases of a third planet in that system that could explain the measured transit times. We update the ephemerides and mass constraints where possible at KOI-70 (Kepler-20), KOI-82 (Kepler-102), KOI-94 (Kepler-89), KOI-137 (Kepler-18), KOI-244 (Kepler-25), KOI-245 (Kepler-37), KOI-282 (Kepler-130), KOI-377 (Kepler-9), KOI-620 (Kepler-51), KOI-806 (Kepler-30), KOI-1353 (Kepler-289), and KOI-1783 (Kepler-1662).more » « less
-
Abstract M dwarfs are favorable targets for exoplanet detection with current instrumentation, but stellar companions can induce false positives and inhibit planet characterization. Knowledge of stellar companions is also critical to our understanding of how binary stars form and evolve. We have therefore conducted a survey of stellar companions around nearby M dwarfs, and here we present our new discoveries. Using the Differential Speckle Survey Instrument at the 4.3 m Lowell Discovery Telescope, and the similar NN-EXPLORE Exoplanet Stellar Speckle Imager at the 3.5 m WIYN telescope, we carried out a volume-limited survey of M-dwarf multiplicity to 15 parsecs, with a special emphasis on including the later M dwarfs that were overlooked in previous surveys. Additional brighter targets at larger distances were included for a total sample size of 1070 M dwarfs. Observations of these 1070 targets revealed 26 new companions; 22 of these systems were previously thought to be single. If all new discoveries are confirmed, then the number of known multiples in the sample will increase by 7.6%. Using our observed properties, as well as the parallaxes and 2MASS
K magnitudes for these objects, we calculate the projected separation, and estimate the mass ratio and component spectral types, for these systems. We report the discovery of a new M-dwarf companion to the white dwarf Wolf 672 A, which hosts a known M-dwarf companion as well, making the system trinary. We also examine the possibility that the new companion to 2MASS J13092185-2330350 is a brown dwarf. Finally, we discuss initial insights from the POKEMON survey. -
Abstract A new 36.17 MHz all‐sky meteor radar was installed at McMurdo Station Antarctica (77.8°S, 166.7°E) in February 2018 to provide wind measurements in the mesosphere and lower thermosphere (MLT) region (70–120 km). This instrument is the highest latitude meteor radar currently in operation in the southern hemisphere; it joins two other meteor radars within the Antarctic Circle. The radar will provide long‐term continuous wind measurements of the polar region, and contribute to a greater understanding of MLT dynamics. This work describes the radar hardware and its context with other instruments in the region. The paper provides an overview of the spatial and temporal variation in meteor echoes over the observation period of March 2018 through October 2021. It also provides an analysis of the mean winds and solar tides over the first three years of operation; including a description of an observed 12 hr summertime wind oscillation consistent with previously documented observations of a westward propagating 12 hr non‐migrating tide of zonal wavenumber 1.