skip to main content


Title: Investigation of a Magnetic Reconnection Event with Extraordinarily High Particle Energization in Magnetotail Turbulence
Abstract

Magnetic reconnection and plasma turbulence are ubiquitous and key processes in the Universe. These two processes are suggested to be intrinsically related: magnetic reconnection can develop turbulence, and, in turn, turbulence can influence or excite magnetic reconnection. In this study, we report a rare and unique electron diffusion region (EDR) observed by the Magnetospheric Multiscale mission in the Earth’s magnetotail with significantly enhanced energetic particle fluxes. The EDR is in a region of strong turbulence within which the plasma density is dramatically depleted. We present three salient features. (1) Despite the turbulence, the EDR behaves nearly the same as that in 2D quasi-planar reconnection; the observations suggest that magnetic reconnection continues for several minutes. (2) The observed reconnection electric field and inferred energy transport are exceptionally large. However, the aspect ratio of the EDR (one definition of reconnection rate) is fairly typical. Instead, extraordinarily large-amplitude Hall electric fields appear to enable the strong energy transport. (3) We hypothesize that the high-energy transport rate, density depletion, and the strong particle acceleration are related to a near-runaway effect, which is due to the combination of low-plasma-density inflow (from lobes) and possible positive feedback between turbulence and reconnection. The detailed study on this EDR gives insight into the interplay between reconnection and turbulence, and the possible near-runaway effect, which may play an important role in other particle acceleration in astrophysical plasma.

 
more » « less
NSF-PAR ID:
10491444
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
962
Issue:
2
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L39
Size(s):
["Article No. L39"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Using a two‐dimensional particle‐in‐cell simulation, we investigate the effects and roles of upper‐hybrid waves (UHW) near the electron diffusion region (EDR). The energy dissipation via the wave‐particle interaction in our simulation agrees withJ · Emeasured by magnetospheric multiscale (MMS) spacecraft. It means that UHW contributes to the local energy dissipation. As a result of wave‐particle interactions, plasma parameters which determine the larger‐scale energy dissipation in the EDR are changed. They‐directional current decreases while the pressure tensorPyzincreases/decreases when the agyrotropic beam density is low/high, where(x, y, z)‐coordinates correspond the(L, M, N)‐boundary coordinates. Because the reconnection electric field comes fromPyz/z, our result implies that UHW plays an additional role in affecting larger‐scale energy dissipation in the EDR by changing plasma parameters. We provide a simple diagram that shows how the UHW activities change the profiles of plasma parameters near the EDR comparing cases with and without UHW.

     
    more » « less
  2. Abstract

    Magnetic reconnection in the relativistic regime has been proposed as an important process for the efficient production of nonthermal particles and high-energy emission. Using fully kinetic particle-in-cell simulations, we investigate how the guide-field strength and domain size affect the characteristic spectral features and acceleration processes. We study two stages of acceleration: energization up until the injection energyγinjand further acceleration that generates a power-law spectrum. Stronger guide fields increase the power-law index andγinj, which suppresses acceleration efficiency. These quantities seemingly converge with increasing domain size, suggesting that our findings can be extended to large-scale systems. We find that three distinct mechanisms contribute to acceleration during injection: particle streaming along the parallel electric field, Fermi reflection, and the pickup process. The Fermi and pickup processes, related to the electric field perpendicular to the magnetic field, govern the injection for weak guide fields and larger domains. Meanwhile, parallel electric fields are important for injection in the strong guide-field regime. In the post-injection stage, we find that perpendicular electric fields dominate particle acceleration in the weak guide-field regime, whereas parallel electric fields control acceleration for strong guide fields. These findings will help explain the nonthermal acceleration and emission in high-energy astrophysics, including black hole jets and pulsar wind nebulae.

     
    more » « less
  3. Magnetic reconnection, especially in the relativistic regime, provides an efficient mechanism for accelerating relativistic particles and thus offers an attractive physical explanation for non-thermal high-energy emission from various astrophysical sources. I present a simple analytical model that elucidates key physical processes responsible for reconnection-driven relativistic non-thermal particle acceleration in the large-system, plasmoid-dominated regime in two dimensions. The model aims to explain the numerically observed dependencies of the power-law index $p$ and high-energy cutoff $\gamma _c$ of the resulting non-thermal particle energy spectrum $f(\gamma )$ on the ambient plasma magnetization $\sigma$ , and (for $\gamma _c$ ) on the system size $L$ . In this self-similar model, energetic particles are continuously accelerated by the out-of-plane reconnection electric field $E_{\rm rec}$ until they become magnetized by the reconnected magnetic field and eventually trapped in plasmoids large enough to confine them. The model also includes diffusive Fermi acceleration by particle bouncing off rapidly moving plasmoids. I argue that the balance between electric acceleration and magnetization controls the power-law index, while trapping in plasmoids governs the cutoff, thus tying the particle energy spectrum to the plasmoid distribution. 
    more » « less
  4. Electrons in earth's magnetotail are energized significantly both in the form of heating and in the form of acceleration to non-thermal energies. While magnetic reconnection is considered to play an important role in this energization, it still remains unclear how electrons are energized and how energy is partitioned between thermal and non-thermal components. Here, we show, based on in situ observations by NASA's magnetospheric multiscale mission combined with multi-component spectral fitting methods, that the average electron energy [Formula: see text] (or equivalently temperature) is substantially higher when the locally averaged electric field magnitude [Formula: see text] is also higher. While this result is consistent with the classification of “plasma-sheet” and “tail-lobe” reconnection during which reconnection is considered to occur on closed and open magnetic field lines, respectively, it further suggests that a stochastic Fermi acceleration in 3D, reconnection-driven turbulence is essential for the production and confinement of energetic electrons in the reconnection region. The puzzle is that the non-thermal power-law component can be quite small even when the electric field is large and the bulk population is significantly heated. The fraction of non-thermal electron energies varies from sample to sample between ∼20% and ∼60%, regardless of the electric field magnitude. Interestingly, these values of non-thermal fractions are similar to those obtained for the above-the-looptop hard x-ray coronal sources for solar flares. 
    more » « less
  5. Abstract

    Particles are accelerated to very high, non-thermal energies during explosive energy-release phenomena in space, solar, and astrophysical plasma environments. While it has been established that magnetic reconnection plays an important role in the dynamics of Earth’s magnetosphere, it remains unclear how magnetic reconnection can further explain particle acceleration to non-thermal energies. Here we review recent progress in our understanding of particle acceleration by magnetic reconnection in Earth’s magnetosphere. With improved resolutions, recent spacecraft missions have enabled detailed studies of particle acceleration at various structures such as the diffusion region, separatrix, jets, magnetic islands (flux ropes), and dipolarization front. With the guiding-center approximation of particle motion, many studies have discussed the relative importance of the parallel electric field as well as the Fermi and betatron effects. However, in order to fully understand the particle acceleration mechanism and further compare with particle acceleration in solar and astrophysical plasma environments, there is a need for further investigation of, for example, energy partition and the precise role of turbulence.

     
    more » « less