skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mathematical modeling is an efficient research tool to address challenges in mass extinction research. Reply to comments on" Knowledge gaps and missing links in understanding mass extinctions: Can mathematical modeling help?"
Award ID(s):
1924807
PAR ID:
10491523
Author(s) / Creator(s):
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Physics of life reviews
ISSN:
1873-1457
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pancreatic Ductal Adenocarcinoma (PDAC) is regarded as one of the most lethal cancer typesfor its challenges associated with early diagnosis and resistance to standard chemotherapeutic agents,thereby leading to a poor five-year survival rate. The complexity of the disease calls for a multidisciplinaryapproach to better manage the disease and improve the status quo in PDAC diagnosis, prognosis,and treatment. To this end, the application of quantitative tools can help improve the understanding ofdisease mechanisms, develop biomarkers for early diagnosis, and design patient-specific treatment strategiesto improve therapeutic outcomes. However, such approaches have only been minimally applied towardsthe investigation of PDAC, and we review the current status of mathematical modeling works inthis field. 
    more » « less
  2. Zebrafish is a model organism that is receiving considerable attention in preclinical research. Particularly important is the use of zebrafish in behavioral pharmacology, where a number of high-throughput experimental paradigms have been proposed to quantify the effect of psychoactive substances consequences on individual and social behavior. In an effort to assist experimental research and improve animal welfare, we propose a mathematical model for the social behavior of groups of zebrafish swimming in a shallow water tank in response to the administration of psychoactive compounds to select individuals. We specialize the mathematical model to caffeine, a popular anxiogenic compound. Each fish is assigned to a Markov chain that describes transitions between freezing and swimming. When swimming, zebrafish locomotion is modeled as a pair of coupled stochastic differential equations, describing the time evolution of the turn-rate and speed in response to caffeine administration. Comparison with experimental results demonstrates the accuracy of the model and its potential use in the design of in-silico experiments. 
    more » « less