skip to main content


Title: Characterizing photopolymer resins for high-temperature vat photopolymerization
Abstract

The availability of engineering polymers for vat photopolymerization (VP) additive manufacturing is limited. This limitation primarily stems from the inability of standard VP systems to recoat high-viscosity resins (> 3 Pa s). High-temperature vat photopolymerization is a new process-based VP platform that enables processing of viscous photopolymer resins (viscosity > 3 Pa s). Research in this area has been focused on demonstrating expanded access to new polymer families, and studying the effect of printing temperature on mechanical and esthetic performance of printed parts. However, methods to determine the printing temperature that prevents the occurrence of thermally induced polymerization (i.e., thermal stability) in the resin have not been established. In this work, the authors have applied characterization techniques such as thermogravimetric analysis, Rheology and differential scanning calorimetry to determine the printing temperature for processing viscous photopolymer resins. As a case study, the developed characterization techniques are applied to: (1) photopolymer that is solid at room temperature, (2) polymer with viscosity of 21 Pa s at room temperature, and the temperature at which the resins can be printed without triggering thermally induced polymerization is successfully determined. The results of this work will act as a materials’ characterization and process parameter development guide for high-temperature VP systems, thus enabling expansion of VP materials catalogue to engineering materials that were previously unprocessable.

 
more » « less
NSF-PAR ID:
10491666
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Progress in Additive Manufacturing
ISSN:
2363-9512
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    An acoustic liquefaction approach to enhance the flow of yield stress fluids during Digital Light Processing (DLP)‐based 3D printing is reported. This enhanced flow enables processing of ultrahigh‐viscosity resins (μapp > 3700 Pa s at shear rates  = 0.01 s–1) based on silica particles in a silicone photopolymer. Numerical simulations of the acousto–mechanical coupling in the DLP resin feed system at different agitation frequencies predict local resin flow velocities exceeding 100 mm s–1at acoustic transduction frequencies of 110 s–1. Under these conditions, highly loaded particle suspensions (weight fractions, ϕ = 0.23) can be printed successfully in complex geometries. Such mechanically reinforced composites possess a tensile toughness 2000% greater than the neat photopolymer. Beyond an increase in processible viscosities, acoustophoretic liquefaction DLP (AL‐DLP) creates a transient reduction in apparent viscosity that promotes resin recirculation and decreases viscous adhesion. As a result, acoustophoretic liquefaction Digital Light Processing (AL‐DLP) improves the printed feature resolution by more than 25%, increases printable object sizes by over 50 times, and can build parts >3 × faster when compared to conventional methodologies.

     
    more » « less
  2. Abstract

    Vat photopolymerization (VP) and direct ink write (DIW) additive manufacturing (AM) provide complex geometries with precise spatial control employing a vast array of photo‐reactive polymeric systems. Although VP is recognized for superior resolution and surface finish, DIW provides versatility for higher viscosity systems. However, each AM platform presents specific rheological requirements that are essential for successful 3D printing. First, viscosity requirements constrain VP polymeric materials to viscosities below 10 Pa s. Thus, this requirement presents a challenging paradox that must be overcome to attain the physical performance of high molecular weight polymers while maintaining suitable viscosities for VP polymeric materials. Second, the necessary rheological complexity that is required for DIW pastes requires additional rheological measurements to ensure desirable thixotropic behavior. This manuscript describes the importance of rheological measurements when designing polymeric latexes for AM. Latexes effectively decouple the dependency of viscosity on molecular weight, thus enabling high molecular weight polymers with low viscosities. Photo‐crosslinking of water‐soluble monomers and telechelic oligomeric diacrylates in the presence of the latex enables the fabrication of a scaffold, which is restricted to the continuous aqueous phase and effectively surrounds the latex nanoparticles enabling the printing of otherwise inaccessible high molecular weight polymers. Rheological testing, including both steady and oscillatory shear experiments, provides insights into system properties and provides predictability for successful printing. This perspective article aims to provide an understanding of both chemical functionality (photo‐ and thermal‐reactivity) and rheological response and their importance for the successful design and evaluation of VP and DIW processable latex formulations.

     
    more » « less
  3.  
    more » « less
  4. Photopolymerizable semicrystalline thermoplastics resulting from thiol–ene polymerizations were formed via fast polymerizations and achieved excellent mechanical properties. These materials have been shown to produce materials desirable for additive manufacturing (3D printing), especially for recyclable printing and investment casting. However, while well-resolved prints were previously achieved with the thiol–ene thermoplastics, the remarkable elongation at break ( ε max ) and toughness ( T ) attained in bulk were not realized for 3D printed components ( ε max,bulk ∼ 790%, T bulk ∼ 102 MJ m −3 vs. ε max,print < 5%, T print < 0.5 MJ m −3 ). In this work, small concentrations (5–10 mol%) of a crosslinker were added to the original thiol–ene resin composition without sacrificing crystallization potential to achieve semicrystalline, covalently crosslinked networks with enhanced mechanical properties. Improvements in ductility and overall toughness were observed for printed crosslinked structures, and substantial mechanical augmentation was further demonstrated with post-manufacture thermal conditioning of printed materials above the melting temperature ( T m ). In some instances, this thermal conditioning to reset the crystalline component of the crosslinked prints yielded mechanical properties that were comparable or superior to its bulk counterpart ( ε max ∼ 790%, T ∼ 95 MJ m −3 ). These unique photopolymerizations and their corresponding monomer compositions exhibited concurrent polymerization and crystallization along with mechanical properties that were tunable by changes to the monomer composition, photopolymerization conditions, and post-polymerization conditioning. This is the first example of a 3D printed semicrystalline, crosslinked material with thermally tunable mechanical properties that are superior to many commercially-available resins. 
    more » « less
  5. Additive manufacturing, otherwise known as three-dimensional (3D) printing, is a rapidly growing technique that is increasingly used for the production of polymer products, resulting in an associated increase in plastic waste generation. Waste from a particular class of 3D-printing, known as vat photopolymerization, is of particular concern, as these materials are typically thermosets that cannot be recycled or reused. Here, we report a mechanical recycling process that uses cryomilling to generate a thermoset powder from photocured parts that can be recycled back into the neat liquid monomer resin. Mechanical recycling with three different materials is demonstrated: two commercial resins with characteristic brittle and elastic mechanical properties and a third model material formulated in-house. Studies using photocured films showed that up to 30 wt% of the model material could be recycled producing a toughness of 2.01 ± 0.55 MJ/m3, within error of neat analogues (1.65 ± 0.27 MJ/m3). Using dynamic mechanical analysis and atomic force microscopy-based infrared spectroscopy, it was determined that monomers diffuse into the recycled powder particles, creating interpenetrating networks upon ultraviolet (UV) exposure. This process mechanically adheres the particles to the matrix, preventing them from acting as failure sites under a tensile load. Finally, 3D-printing of the commercial brittle material with 10 wt% recycle content produced high quality parts that were visually similar. The maximum stress (46.7 ± 6.2 MPa) and strain at break (11.6 ± 2.3%) of 3D-printed parts with recycle content were within error the same as neat analogues (52.0 ± 1.7 MPa; 13.4 ± 1.8%). Overall, this work demonstrates mechanical recycling of photopolymerized thermosets and shows promise for the reuse of photopolymerized 3D-printing waste. 
    more » « less