skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: New Fairness Concepts for Allocating Indivisible Items

For the fundamental problem of fairly dividing a set of indivisible items among agents, envy-freeness up to any item (EFX) and maximin fairness (MMS) are arguably the most compelling fairness concepts proposed till now. Unfortunately, despite significant efforts over the past few years, whether EFX allocations always exist is still an enigmatic open problem, let alone their efficient computation. Furthermore, today we know that MMS allocations are not always guaranteed to exist. These facts weaken the usefulness of both EFX and MMS, albeit their appealing conceptual characteristics.We propose two alternative fairness concepts—called epistemic EFX (EEFX) and minimum EFX value fairness (MXS)---inspired by EFX and MMS. For both, we explore their relationships to well-studied fairness notions and, more importantly, prove that EEFX and MXS allocations always exist and can be computed efficiently for additive valuations. Our results justify that the new fairness concepts are excellent alternatives to EFX and MMS.

 
more » « less
Award ID(s):
1942321
PAR ID:
10491686
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
International Joint Conferences on Artificial Intelligence Organization
Date Published:
ISBN:
978-1-956792-03-4
Page Range / eLocation ID:
2554 to 2562
Format(s):
Medium: X
Location:
Macau, SAR China
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the fair allocation of mixture of indivisible goods and chores under lexicographic preferences---a subdomain of additive preferences. A prominent fairness notion for allocating indivisible items is envy-freeness up to any item (EFX). Yet, its existence and computation has remained a notable open problem. By identifying a class of instances with terrible chores, we show that determining the existence of an EFX allocation is NP-complete. This result immediately implies the intractability of EFX under additive preferences. Nonetheless, we propose a natural subclass of lexicographic preferences for which an EFX and Pareto optimal (PO) allocation is guaranteed to exist and can be computed efficiently for any mixed instance. Focusing on two weaker fairness notions, we investigate finding EF1 and Pareto optimal allocations for special instances with terrible chores, and show that MMS and PO allocations can be computed efficiently for any mixed instance with lexicographic preferences. 
    more » « less
  2. We study fair allocation of indivisible goods and chores among agents with lexicographic preferences---a subclass of additive valuations. In sharp contrast to the goods-only setting, we show that an allocation satisfying envy-freeness up to any item (EFX) could fail to exist for a mixture of objective goods and chores. To our knowledge, this negative result provides the first counterexample for EFX over (any subdomain of) additive valuations. To complement this non-existence result, we identify a class of instances with (possibly subjective) mixed items where an EFX and Pareto optimal allocation always exists and can be efficiently computed. When the fairness requirement is relaxed to maximin share (MMS), we show positive existence and computation for any mixed instance. More broadly, our work examines the existence and computation of fair and efficient allocations both for mixed items as well as chores-only instances, and highlights the additional difficulty of these problems vis-à-vis their goods-only counterparts. 
    more » « less
  3. We study the problem of allocating indivisible items to budget-constrained agents, aiming to provide fairness and efficiency guarantees. Specifically, our goal is to ensure that the resulting allocation is envy-free up to any item (EFx) while minimizing the amount of inefficiency that this needs to introduce. We first show that there exist two-agent problem instances for which no EFx allocation is Pareto-efficient. We, therefore, turn to approximation and use the (Pareto-efficient) maximum Nash welfare allocation as a benchmark. For two-agent instances, we provide a procedure that always returns an EFx allocation while achieving the best possible approximation of the optimal Nash social welfare that EFx allocations can achieve. For the more complicated case of three-agent instances, we provide a procedure that guarantees EFx, while achieving a constant approximation of the optimal Nash social welfare for any number of items. 
    more » « less
  4. null (Ed.)
    Fair division is a subfield of multiagent systems that is concerned with object distribution. When objects are indivisible, the Maximin Share Guarantee (MMS) is a desirable fairness notion; however, it is not guaranteed to exist. While MMS allocations may not always exist, a relaxation of MMS is guaranteed to exist. We show that there exists a family of instances for which this relaxation fails to guarantee the MMS value for all but a small constant number of agents. 
    more » « less
  5. We consider the problem of fairly allocating a set of indivisible goods among n agents with additive valuations, using the popular fairness notion of maximin share (MMS). Since MMS allocations do not always exist, a series of works provided existence and algorithms for approximate MMS allocations. The Garg-Taki algorithm gives the current best approximation factor of (3/4 + 1/12n). Most of these results are based on complicated analyses, especially those providing better than 2/3 factor. Moreover, since no tight example is known of the Garg-Taki algorithm, it is unclear if this is the best factor of this approach. In this paper, we significantly simplify the analysis of this algorithm and also improve the existence guarantee to a factor of (3/4 + min(1/36, 3/(16n-4))). For small n, this provides a noticeable improvement. Furthermore, we present a tight example of this algorithm, showing that this may be the best factor one can hope for with the current techniques.

     
    more » « less