skip to main content

Title: Effect of High Current Density Pulses on Performance Enhancement of Optoelectronic Devices

Thermal annealing is commonly used in fabrication processing and/or performance enhancement of electronic and opto-electronic devices. In this study, we investigate an alternative approach, where high current density pulses are used instead of high temperature. The basic premise is that the electron wind force, resulting from the momentum loss of high-energy electrons at defect sites, is capable of mobilizing internal defects. The proposed technique is demonstrated on commercially available optoelectronic devices with two different initial conditions. The first study involved a thermally degraded edge-emitting laser diode. About 90% of the resulting increase in forward current was mitigated by the proposed annealing technique where very low duty cycle was used to suppress any temperature rise. The second study was more challenging, where a pristine vertical-cavity surface-emitting laser (VCSEL) was subjected to similar processing to see if the technique can enhance performance. Encouragingly, this treatment yielded a notable improvement of over 20% in the forward current. These findings underscore the potential of electropulsing as an efficient in-operando technique for damage recovery and performance enhancement in optoelectronic devices.

more » « less
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
The Electrochemical Society
Date Published:
Journal Name:
ECS Journal of Solid State Science and Technology
Medium: X Size: Article No. 025003
["Article No. 025003"]
Sponsoring Org:
National Science Foundation
More Like this
  1. In recent years, oxide electronics has emerged as one of the most promising new technologies for a variety of electrical and optoelectronic applications, including next-generation displays, solar cells, batteries, and photodetectors. Oxide electronics have a lot of potential because of their high carrier mobilities and ability to be manufactured at low temperatures. However, the preponderance of oxide semiconductors is n-type oxides, limiting present applications to unipolar devices and stifling the development of oxide-based bipolar devices like p-n diodes and complementary metal-oxide–semiconductors. We have contributed to oxide electronics, particularly on transition metal oxide semiconductors of which the cations include In, Zn, Sn and Ga. We have integrated these oxide semiconductors into thin film transistors (TFTs) as active channel layer in light of the unique combination of electronic and optical properties such as high carrier mobility (5-10 cm2/Vs), optical transparency in the visible regime (>~90%) and mild thermal budget processing (200-400°C). In this study, we achieved four different results. The first result is that unlike several previous reports on oxide p-n junctions fabricated exploiting a thin film epitaxial growth technique (known as molecular beam epitaxy, MBE) or a high-powered laser beam process (known as pulsed laser deposition, PLD) that requires ultra-high vacuum conditions, a large amount of power, and is limited for large-area processing, we demonstrate oxide-based heterojunction p-n diodes that consist of sputter-synthesized p-SnOx and n-IGZO of which the manufacturing routes are in-line with current manufacturing requirements. The second result is that the synthesized p-SnOx films are devoid of metallic Sn phases (i.e., Sn0 state) with carrier density tuneability and high carrier mobility (> 2 cm2/Vs). The third result is that the charge blocking performance of the metallurgical junction is significantly enhanced by the engineering of trap/defect density of n-IGZO, which is identified using photoelectron microscopy and valence band measurements. The last result is that the resulting oxide-based p-n heterojunction exhibits a high rectification ratio greater than 103 at ±3 V (highest among the sputter-processed oxide junctions), a low saturation current of ~2×10-10 A, and a small turn-on voltage of ~0.5 V. The outcomes of the current study are expected to contribute to the development of p-type oxides and their industrial device applications such as p-n diodes of which the manufacturing routes are in-line with the current processing requirements. 
    more » « less
  2. Abstract

    Hybrid organic–inorganic perovskites have recently gained immense attention due to their unique optical and electronic properties and low production cost, which make them promising candidates for a wide range of optoelectronic devices. But unlike most other technologies, the breakthroughs witnessed in hybrid perovskite optoelectronics have outgrown the basic understanding of the fundamental material properties. For example, the effectiveness of charge transport in relation to film microstructure and processing has remained elusive. In this study, field‐effect transistors are fabricated and evaluated in order to probe the nature and dynamics of charge transport in thin films of methylammonium lead iodide. A dramatic improvement is shown in the electrical properties upon solvent vapor annealing. The resulting devices exhibit ambipolar transport, with room‐temperature hole and electron mobilities exceeding 10 cm2V−1s−1. The remarkable enhancement in charge carrier mobility is attributed to the increase in the grain size and passivation of grain boundaries via the formation of solvent complexes.

    more » « less
  3. Abstract

    Defect mitigation of electronic devices is conventionally achieved using thermal annealing. To mobilize the defects, very high temperatures are necessary. Since thermal diffusion is random in nature, the process may take a prolonged period of time. In contrast, we demonstrate a room temperature annealing technique that takes only a few seconds. The fundamental mechanism is defect mobilization by atomic scale mechanical force originating from very high current density but low duty cycle electrical pulses. The high-energy electrons lose their momentum upon collision with the defects, yet the low duty cycle suppresses any heat accumulation to keep the temperature ambient. For a 7 × 105A cm−2pulsed current, we report an approximately 26% reduction in specific on-resistance, a 50% increase of the rectification ratio with a lower ideality factor, and reverse leakage current for as-fabricated vertical geometry GaN p–n diodes. We characterize the microscopic defect density of the devices before and after the room temperature processing to explain the improvement in the electrical characteristics. Raman analysis reveals an improvement in the crystallinity of the GaN layer and an approximately 40% relaxation of any post-fabrication residual strain compared to the as-received sample. Cross-sectional transmission electron microscopy (TEM) images and geometric phase analysis results of high-resolution TEM images further confirm the effectiveness of the proposed room temperature annealing technique to mitigate defects in the device. No detrimental effect, such as diffusion and/or segregation of elements, is observed as a result of applying a high-density pulsed current, as confirmed by energy dispersive x-ray spectroscopy mapping.

    more » « less
  4. In this work, we demonstrate the rejuvenation of Ti/4H-SiC Schottky barrier diodes after forward current-induced degradation, at room temperature and in a few seconds, by exploiting the physics of high-energy electron interactions with defects. The diodes were intentionally degraded to a 42% decrease in forward current and a 9% increase in leakage current through accelerated electrical stressing. The key feature of our proposed rejuvenation process is very high current density electrical pulsing with low frequency and duty cycle to suppress any temperature rise. The primary stimulus is, therefore, the electron wind force, which is derived from the loss of the momentum of the high energy electrons upon collision with the defects. Such defect-specific or “just in location” mobilization of atoms allows a significant decrease in defect concentration, which is not possible with conventional thermal annealing that requires higher temperatures and longer times. We show evidence of rejuvenation with additional improvement in leakage current (16%) and forward current (38%) beyond the pristine condition. Transmission electron microscopy, geometric phase analysis, Raman spectroscopy, and energy dispersive x-ray-spectroscopy reveal the enhancement of defects and interfaces. The ultrafast and room temperature process has the potential for rejuvenating electronic devices operating in high power and harsh environmental conditions. 
    more » « less
  5. Abstract

    The desire for cost-effective strategies for producing organic electronic devices has led to many new methods for the organic semiconductor layer deposition; however, manufacturing contacts remains an expensive technique due to the high cost of both the materials used and the processing necessary for their patterning. In this work, we present a method for contact deposition and patterning, which overcomes these limitations and allows fabrication of all-printed organic thin-film transistors on paper. The method relies on depositing contacts using aerosol spray and patterning them with a digitally printed mask from an office laser printer, at ambient temperature and pressure. This technique, which we have denoted aerosol spray laser lithography, is cost-effective and extremely versatile in terms of material choice and electrode geometry. As the processing temperature does not exceed 155 °C, it is compatible with a variety of substrates, including plastic or paper. The success of this method marks an opportunity for a rapid, scalable, and low-cost alternative to current electrode-manufacturing techniques for development of flexible, large-area, electronic applications.

    more » « less