Bound states in the continuum (BICs) hold significant promise in manipulating electromagnetic fields and reducing losses in optical structures, leading to advancements in fundamental research and practical applications. Despite their observation in various optical systems, the behavior of BIC in whispering-gallery-modes (WGMs) optical microcavities, essential components of photonic integrated chips, has yet to be thoroughly explored. In this study, we propose and experimentally identify a robust mechanism for generating quasi-BIC in a single deformed microcavity. By introducing boundary deformations, we construct stable unidirectional radiation channels as leaking continuum shared by different resonant modes and experimentally verify their external strong mode coupling. This results in drastically suppressed leaking loss of one originally long-lived resonance, manifested as more than a threefold enhancement of its quality (Q) factor, while the other short-lived resonance becomes more lossy, demonstrating the formation of Friedrich–Wintgen quasi-BICs as corroborated by the theoretical model and experimental data. This research will provide a practical approach to enhance theQ-factor of optical microcavities, opening up potential applications in the area of deformed microcavities, nonlinear optics, quantum optics, and integrated photonics.
more »
« less
Single-peak and narrow-band mid-infrared thermal emitters driven by mirror-coupled plasmonic quasi-BIC metasurfaces
Wavelength-selective thermal emitters (WS-EMs) hold considerable appeal due to the scarcity of cost-effective, narrow-band sources in the mid-to-long-wave infrared spectrum. WS-EMs achieved via dielectric materials typically exhibit thermal emission peaks with high quality factors (Qfactors), but their optical responses are prone to temperature fluctuations. Metallic EMs, on the other hand, show negligible drifts with temperature changes, but theirQfactors usually hover around 10. In this study, we introduce and experimentally verify an EM grounded in plasmonic quasi-bound states in the continuum (BICs) within a mirror-coupled system. Our design numerically delivers an ultra-narrowband single peak with aQfactor of approximately 64 and near-unity absorptance that can be freely tuned within an expansive band of more than 10 µm. By introducing air slots symmetrically, theQfactor can be further augmented to around 100. Multipolar analysis and phase diagrams are presented to elucidate the operational principle. Importantly, our infrared spectral measurements affirm the remarkable resilience of our designs’ resonance frequency in the face of temperature fluctuations over 300°C. Additionally, we develop an effective impedance model based on the optical nanoantenna theory to understand how further tuning of the emission properties is achieved through precise engineering of the slot. This research thus heralds the potential of applying plasmonic quasi-BICs in designing ultra-narrowband, temperature-stable thermal emitters in the mid-infrared. Moreover, such a concept may be adaptable to other frequency ranges, such as near-infrared, terahertz, and gigahertz.
more »
« less
- Award ID(s):
- 2143836
- PAR ID:
- 10492085
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optica
- Volume:
- 11
- Issue:
- 3
- ISSN:
- 2334-2536
- Format(s):
- Medium: X Size: Article No. 305
- Size(s):
- Article No. 305
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Plasmonic metasurfaces with adjustable optical responses can be achieved through phase change materials (PCMs) with high optical contrast. However, the on–off behavior of the phase change process results in the binary response of photonic devices, limiting the applications to the two-stage modulation. In this work, we propose a reconfigurable metasurface emitter based on a gold nanorod array on a VO2 thin film for achieving continuously tunable narrowband thermal emission. The electrode line connecting the center of each nanorod not only enables emission excitation electrically but also activates the phase transition of VO2 beneath the array layer due to Joule heating. The change in the dielectric environment due to the VO2 phase transition results in the modulation of emissivity from the plasmonic metasurfaces. The device performances regarding critical geometrical parameters are analyzed based on a fully coupled electro-thermo-optical finite element model. This new metasurface structure extends the binary nature of PCM based modulations to continuous reconfigurability and provides new possibilities toward smart metasurface emitters, reflectors, and other nanophotonic devices.more » « less
-
Metasurfaces consisting of an array of planar sub-wavelength structures have shown great potentials in controlling thermal infrared radiation, including intensity, coherence, and polarization. These capabilities together with the two-dimensional nature make thermal metasurfaces an ultracompact multifunctional platform for infrared light manipulation. Integrating the functionalities, such as amplitude, phase (spectrum and directionality), and polarization, on a single metasurface offers fascinating device responses. However, it remains a significant challenge to concurrently optimize the optical, electrical, and thermal responses of a thermal metasurface in a small footprint. In this work, we develop a center-contacted electrode line design for a thermal infrared metasurface based on a gold nanorod array, which allows local Joule heating to electrically excite the emission without undermining the localized surface plasmonic resonance. The narrowband emission of thermal metasurfaces and their robustness against temperature nonuniformity demonstrated in this work have important implications for the applications in infrared imaging, sensing, and energy harvesting.more » « less
-
We have developed a mid-infrared Doppler-free saturation absorption spectroscopy apparatus that employs a commercial continuous-wave optical parametric oscillator (CW OPO), complemented by a home-built automation and wavelength scanning system. Here, we report a comprehensive spectral scan of the Q branch transitions of theν3 = 1 band of methane (CH4) with an average linewidth (FWHM) of 4.5 MHz. The absolute frequency calibration was achieved using previously reported transition frequencies determined using optical frequency combs, while a Fabry–Perot etalon was used for the relative frequency calibration. We report 15 transitions with improved accuracies of 1.13 MHz (3.76 × 10−5 cm−1).more » « less
-
Chiral metamaterials in the mid-infrared wavelength range have tremendous potential for studying thermal emission manipulation and molecular vibration sensing. Here, we present one type of chiral plasmonic metasurface absorber with high circular dichroism (CD) in absorption of more than 0.56 across the mid-infrared wavelength range of 5–5.5 µm. The demonstrated chiral metasurface absorbers exhibit a maximum chiral absorption of 0.87 and a maximum CD in absorption of around 0.60. By adjusting the geometric parameters of the unit cell structure of the metasurface, the chiral absorption peak can be shifted to different wavelengths. Due to the strong chiroptical response, the thermal analysis of the designed chiral metasurface absorber further shows the large temperature difference between the left-handed and right-handed circularly polarized light. The demonstrated results can be utilized in various applications such as molecular detection, mid-infrared filter, thermal emission, and chiral imaging.more » « less
An official website of the United States government
