We identify a new kind of physically realizable exceptional point (EP) corresponding to degenerate coherent perfect absorption, in which two purely incoming solutions of the wave operator for electromagnetic or acoustic waves coalesce to a single state. Such non-Hermitian degeneracies can occur at a real-valued frequency without any associated noise or nonlinearity, in contrast to EPs in lasers. The absorption line shape for the eigenchannel near the EP is quartic in frequency around its maximum in any dimension. In general, for the parameters at which an operator EP occurs, the associated scattering matrix does not have an EP. However, in one dimension, when the S matrix does have a perfectly absorbing EP, it takes on a universal one-parameter form with degenerate values for all scattering coefficients. For absorbing disk resonators, these EPs give rise to chiral absorption: perfect absorption for only one sense of rotation of the input wave.
more »
« less
Control of the Scattering Properties of Complex Systems by Means of Tunable Metasurfaces
We demonstrate the ability to control the scattering properties of a two-dimensional wave-chaotic microwave billiard through the use of tunable metasurfaces located on the interior walls of the billiard. The complex reflection coefficient of the metasurfaces can be varied by applying a DC voltage bias to varactor diodes on the mushroom-shaped resonant patches, and this proves to be very effective at perturbing the eigenmodes of the cavity. Placing multiple metasurfaces inside the cavity allows us to engineer desired scattering conditions, such as coherent perfect absorption, by actively manipulating the poles and zeros of the scattering matrix through the application of multiple voltage biases. We demonstrate the ability to create on-demand coherent perfect absorption conditions at a specific frequency, and document the near-null of output power as a function of four independent parameters tuned through the coherent perfect absorption point. A remarkably low output-to-input power ratio P_{out}/P_{in} = 3:71 x 10^{-8} is achieved near the coherent perfect absorption point at 8.54 GHz.
more »
« less
- Award ID(s):
- 2148318
- PAR ID:
- 10492133
- Editor(s):
- Sirko, Leszek
- Publisher / Repository:
- Polish Academy of Sciences
- Date Published:
- Journal Name:
- Acta Physica Polonica A
- Volume:
- 144
- Issue:
- 6
- ISSN:
- 1898-794X
- Page Range / eLocation ID:
- 421 to 428
- Subject(s) / Keyword(s):
- Coherent Perfect Absorption, tunable metasurfaces, scattering zeros and poles
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recently, exceptional points, a degeneracy of open wave systems, have been observed in photonics, acoustics, and electronics. They have mainly been realized as a degeneracy of resonances; however, a degeneracy associated with the absorption of waves can exhibit distinct and interesting physical features. Here, we demonstrate such an absorbing exceptional point by engineering degeneracies in the absorption spectrum of dissipative optical microcavities. We experimentally distinguished the conditions to realize an absorbing exceptional point versus a resonant exceptional point. Furthermore, when the optical loss was tuned to achieve perfect absorption at an absorbing exceptional point, we observed its signature, an anomalously broadened line shape in the absorption spectrum. The distinct scattering properties of the absorbing exceptional point create opportunities for both fundamental study and applications of non-Hermitian degeneracies.more » « less
-
Parity-time-reciprocal scaling (PTX)-symmetry has been recently proposed to tailor the resonance linewidth and gain threshold of non-Hermitian systems with new exhilarating applications, such as coherent perfect absorber-laser (CPAL) and exceptional point (EP)-based devices. Here, we put forward a nearly-lossless, low-index metachannel formed byPTX-symmetric metasurfaces operating at the CPAL point, supporting the undamped weakly-guided fast wave (leaky mode) and thus achieving ultradirective leaky-wave radiation. Moreover, this structure allows for a reconfigurable and tunable radiation angle as well as beamwidth determined by the reciprocally scaled gain-loss parameter. We envision that the proposedPTX-symmetric metasurfaces will shed light on the design of antennas and emitters with ultrahigh directionality, as well as emerging applications enabled by extreme material properties, such as epsilon-near-zero (ENZ) and beyond.more » « less
-
Based on a general transport theory for nonreciprocal non-Hermitian systems and a topological model that encompasses a wide range of previously studied examples, we (i) provide conditions for effects such as reflectionless and transparent transport, lasing, and coherent perfect absorption, (ii) identify which effects are compatible and linked with each other, and (iii) determine by which levers they can be tuned independently. For instance, the directed amplification inherent in the non-Hermitian skin effect does not enter the spectral conditions for reflectionless transport, lasing, or coherent perfect absorption, but allows to adjust the transparency of the system. In addition, in the topological model the conditions for reflectionless transport depend on the topological phase, but those for coherent perfect absorption do not. This then allows us to establish a number of distinct transport signatures of non-Hermitian, nonreciprocal, and topological behavior, in particular (1) reflectionless transport in a direction that depends on the topological phase, (2) invisibility coinciding with the skin-effect phase transition of topological edge states, and (3) coherent perfect absorption in a system that is transparent when probed from one side.more » « less
-
Two-dimensional transition metal dichalcogenides are of growing interest for flexible optoelectronics and power applications, due to their tunable optical properties, lightweight nature, and mechanical pliability. However, their thin nature inherently limits their optical absorption and, therefore, efficiency. Here, we propose a few-layer WSe2optoelectronic device that achieves near perfect absorption through a combination of optical effects. The WSe2can be scalably grown below an Al2O3superstrate. Our device includes a corrugated back reflector, modeled as a plasmonic nanowire array. We investigate the entire range of widths of the corrugations in the back reflector, including the edge cases of a simple back mirror (width equal to period) and a Fabry-Perot cavity (zero width). We demonstrate the zero-mode enhancement arising from the back reflector, the weakly coupled enhancement arising from the Fabry-Perot cavity, and the strongly coupled enhancement arising from the localized surface plasmon resonance of the nanowires, explain the physical nature of the spectral peaks, and theoretically model the hybridization of these phenomena using a coupled oscillator model. Our champion device exhibits 82% peak absorptance in the WSe2alone, 92% in the WSe2plus nanowires, and 98% total absorptance. Thus, we achieve a near-perfect absorber in which most of the absorption is in the few-layer WSe2, with a desirable device framework for integration with scalable growth of the WSe2, thereby making our designs applicable to a range of practical optoelectronic devices.more » « less
An official website of the United States government

