skip to main content


This content will become publicly available on December 1, 2024

Title: Control of the Scattering Properties of Complex Systems by Means of Tunable Metasurfaces
We demonstrate the ability to control the scattering properties of a two-dimensional wave-chaotic microwave billiard through the use of tunable metasurfaces located on the interior walls of the billiard. The complex reflection coefficient of the metasurfaces can be varied by applying a DC voltage bias to varactor diodes on the mushroom-shaped resonant patches, and this proves to be very effective at perturbing the eigenmodes of the cavity. Placing multiple metasurfaces inside the cavity allows us to engineer desired scattering conditions, such as coherent perfect absorption, by actively manipulating the poles and zeros of the scattering matrix through the application of multiple voltage biases. We demonstrate the ability to create on-demand coherent perfect absorption conditions at a specific frequency, and document the near-null of output power as a function of four independent parameters tuned through the coherent perfect absorption point. A remarkably low output-to-input power ratio P_{out}/P_{in} = 3:71 x 10^{-8} is achieved near the coherent perfect absorption point at 8.54 GHz.  more » « less
Award ID(s):
2148318
NSF-PAR ID:
10492133
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Sirko, Leszek
Publisher / Repository:
Polish Academy of Sciences
Date Published:
Journal Name:
Acta Physica Polonica A
Volume:
144
Issue:
6
ISSN:
1898-794X
Page Range / eLocation ID:
421 to 428
Subject(s) / Keyword(s):
["Coherent Perfect Absorption, tunable metasurfaces, scattering zeros and poles"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We identify a new kind of physically realizable exceptional point (EP) corresponding to degenerate coherent perfect absorption, in which two purely incoming solutions of the wave operator for electromagnetic or acoustic waves coalesce to a single state. Such non-Hermitian degeneracies can occur at a real-valued frequency without any associated noise or nonlinearity, in contrast to EPs in lasers. The absorption line shape for the eigenchannel near the EP is quartic in frequency around its maximum in any dimension. In general, for the parameters at which an operator EP occurs, the associated scattering matrix does not have an EP. However, in one dimension, when the S matrix does have a perfectly absorbing EP, it takes on a universal one-parameter form with degenerate values for all scattering coefficients. For absorbing disk resonators, these EPs give rise to chiral absorption: perfect absorption for only one sense of rotation of the input wave. 
    more » « less
  2. Parity-time-reciprocal scaling (PTX)-symmetry has been recently proposed to tailor the resonance linewidth and gain threshold of non-Hermitian systems with new exhilarating applications, such as coherent perfect absorber-laser (CPAL) and exceptional point (EP)-based devices. Here, we put forward a nearly-lossless, low-index metachannel formed byPTX-symmetric metasurfaces operating at the CPAL point, supporting the undamped weakly-guided fast wave (leaky mode) and thus achieving ultradirective leaky-wave radiation. Moreover, this structure allows for a reconfigurable and tunable radiation angle as well as beamwidth determined by the reciprocally scaled gain-loss parameter. We envision that the proposedPTX-symmetric metasurfaces will shed light on the design of antennas and emitters with ultrahigh directionality, as well as emerging applications enabled by extreme material properties, such as epsilon-near-zero (ENZ) and beyond.

     
    more » « less
  3. Electron diffraction through a thin patterned silicon membrane can be used to create complex spatial modulations in electron distributions. By precisely varying parameters such as crystallographic orientation and wafer thickness, the intensity of reflections in the diffraction plane can be controlled and by placing an aperture to block all but one spot, we can form an image with different parts of the patterned membrane, as is done for bright-field imaging in microscopy. The patterned electron beams can then be used to control phase and amplitude of subsequent x-ray emission, enabling novel coherent x-ray methods. The electrons themselves can also be used for femtosecond time resolved diffraction and microscopy. As a first step toward patterned beams, we demonstrate experimentally and through simulation the ability to accurately predict and control diffraction spot intensities. We simulate MeV transmission electron diffraction patterns using the multislice method for various crystallographic orientations of a single crystal Si(001) membrane near beam normal. The resulting intensity maps of the Bragg reflections are compared to experimental results obtained at the Accelerator Structure Test Area Ultrafast Electron Diffraction (ASTA UED) facility at SLAC. Furthermore, the fraction of inelastic and elastic scattering of the initial charge is estimated along with the absorption of the membrane to determine the contrast that would be seen in a patterned version of the Si(001) membrane. 
    more » « less
  4. Recently, exceptional points, a degeneracy of open wave systems, have been observed in photonics, acoustics, and electronics. They have mainly been realized as a degeneracy of resonances; however, a degeneracy associated with the absorption of waves can exhibit distinct and interesting physical features. Here, we demonstrate such an absorbing exceptional point by engineering degeneracies in the absorption spectrum of dissipative optical microcavities. We experimentally distinguished the conditions to realize an absorbing exceptional point versus a resonant exceptional point. Furthermore, when the optical loss was tuned to achieve perfect absorption at an absorbing exceptional point, we observed its signature, an anomalously broadened line shape in the absorption spectrum. The distinct scattering properties of the absorbing exceptional point create opportunities for both fundamental study and applications of non-Hermitian degeneracies. 
    more » « less
  5. Super-resolution optical sensing is of critical importance in science and technology and has required prior information about an imaging system or obtrusive near-field probing. Additionally, coherent imaging and sensing in heavily scattering media such as biological tissue has been challenging, and practical approaches have either been restricted to measuring the field transmission of a single point source, or to where the medium is thin. We present the concept of far-subwavelength spatial sensing with relative object motion in speckle as a means to coherently sense through heavy scatter. Experimental results demonstrate the ability to distinguish nominally identical objects with nanometer-scale translation while hidden in randomly scattering media, without the need for precise or known location and with imprecise replacement. The theory and supportive illustrations presented provide the basis for super-resolution sensing and the possibility of virtually unlimited spatial resolution, including through thick, heavily scattering media with relative motion of an object in a structured field. This work provides enabling opportunities for material inspection, security, and biological sensing.

     
    more » « less