skip to main content

Title: A new method for short-duration transient detection in radio images: searching for transient sources in MeerKAT data of NGC 5068

Transient surveys are a vital tool in exploring the dynamic Universe, with radio transients acting as beacons for explosive and highly energetic astrophysical phenomena. However, performing commensal transient surveys using radio imaging can require a significant amount of computing power, data storage, and time. With the instrumentation available to us, and with new and exciting radio interferometers in development, it is essential that we develop efficient methods to probe the radio transient sky. In this paper, we present results from a commensal short-duration transient survey, on time-scales of 8 s, 128 s, and 1 h, using data from the MeerKAT radio telescope. The data set used was obtained as part of a galaxy observing campaign, and we focus on the field of NGC 5068. We present a quick, wide-field imaging strategy to enable fast imaging of large data sets, and develop methods to efficiently filter detected transient candidates. No transient candidates were identified on the time-scales of 8 s, 128 s, and 1 h, leading to competitive limits on the transient surface densities of $6.7\, {\times }\, 10^{-5}$, $1.1\, {\times }\, 10^{-3}$, and $3.2\, {\times }\, 10^{-2}$ deg−1 at sensitivities of 56.4, 19.2, and 3.9 mJy following primary beam correction for the respective time-scales. We find one possible candidate that could be associated with a stellar flare, which was rejected due to strict image quality control. Further short time-scale radio observations of this candidate could give definite results about its origin.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Medium: X Size: p. 6985-6996
["p. 6985-6996"]
Sponsoring Org:
National Science Foundation
More Like this

    Many transient and variable sources detected at multiple wavelengths are also observed to vary at radio frequencies. However, these samples are typically biased towards sources that are initially detected in wide-field optical, X-ray, or gamma-ray surveys. Many sources that are insufficiently bright at higher frequencies are therefore missed, leading to potential gaps in our knowledge of these sources and missing populations that are not detectable in optical, X-rays, or gamma-rays. Taking advantage of new state-of-the-art radio facilities that provide high-quality wide-field images with fast survey speeds, we can now conduct unbiased surveys for transient and variable sources at radio frequencies. In this paper, we present an unbiased survey using observations obtained by MeerKAT, a mid-frequency (∼GHz) radio array in South Africa’s Karoo Desert. The observations used were obtained as part of a weekly monitoring campaign for X-ray binaries (XRBs) and we focus on the field of MAXI J1820+070. We develop methods to efficiently filter transient and variable candidates that can be directly applied to other data sets. In addition to MAXI J1820+070, we identify four likely active galactic nuclei, one source that could be a Galactic source (pulsar or quiescent XRB) or an AGN, and one variable pulsar. No transient sources, defined as being undetected in deep images, were identified leading to a transient surface density of <3.7 × 10−2 deg−2 at a sensitivity of 1 mJy on time-scales of 1 week at 1.4 GHz.

    more » « less
  2. ABSTRACT With the upcoming commensal surveys for Fast Radio Bursts (FRBs), and their high candidate rate, usage of machine learning algorithms for candidate classification is a necessity. Such algorithms will also play a pivotal role in sending real-time triggers for prompt follow-ups with other instruments. In this paper, we have used the technique of Transfer Learning to train the state-of-the-art deep neural networks for classification of FRB and Radio Frequency Interference (RFI) candidates. These are convolutional neural networks which work on radio frequency-time and dispersion measure-time images as the inputs. We trained these networks using simulated FRBs and real RFI candidates from telescopes at the Green Bank Observatory. We present 11 deep learning models, each with an accuracy and recall above 99.5 per cent on our test data set comprising of real RFI and pulsar candidates. As we demonstrate, these algorithms are telescope and frequency agnostic and are able to detect all FRBs with signal-to-noise ratios above 10 in ASKAP and Parkes data. We also provide an open-source python package fetch (Fast Extragalactic Transient Candidate Hunter) for classification of candidates, using our models. Using fetch, these models can be deployed along with any commensal search pipeline for real-time candidate classification. 
    more » « less
  3. ABSTRACT We present results from a radio survey for variable and transient sources on 15-min time-scales, using the Australian SKA Pathfinder (ASKAP) pilot surveys. The pilot surveys consist of 505 h of observations conducted at around 1 GHz observing frequency, with a total sky coverage of 1476 deg2. Each observation was tracked for approximately 8 – 10 h, with a typical rms sensitivity of ∼30 μJy beam−1 and an angular resolution of ∼12 arcsec. The variability search was conducted within each 8 – 10 h observation on a 15-min time-scale. We detected 38 variable and transient sources. Seven of them are known pulsars, including an eclipsing millisecond pulsar, PSR J2039−5617. Another eight sources are stars, only one of which has been previously identified as a radio star. For the remaining 23 objects, 22 are associated with active galactic nuclei or galaxies (including the five intra-hour variables that have been reported previously), and their variations are caused by discrete, local plasma screens. The remaining source has no multiwavelength counterparts and is therefore yet to be identified. This is the first large-scale radio survey for variables and transient sources on minute time-scales at a sub-mJy sensitivity level. We expect to discover ∼1 highly variable source per day using the same technique on the full ASKAP surveys. 
    more » « less

    Searches for optical transients are usually performed with a cadence of days to weeks, optimized for supernova discovery. The optical fast transient sky is still largely unexplored, with only a few surveys to date having placed meaningful constraints on the detection of extragalactic transients evolving at sub-hour time-scales. Here, we present the results of deep searches for dim, minute-time-scale extragalactic fast transients using the Dark Energy Camera, a core facility of our all-wavelength and all-messenger Deeper, Wider, Faster programme. We used continuous 20 s exposures to systematically probe time-scales down to 1.17 min at magnitude limits g > 23 (AB), detecting hundreds of transient and variable sources. Nine candidates passed our strict criteria on duration and non-stellarity, all of which could be classified as flare stars based on deep multiband imaging. Searches for fast radio burst and gamma-ray counterparts during simultaneous multifacility observations yielded no counterparts to the optical transients. Also, no long-term variability was detected with pre-imaging and follow-up observations using the SkyMapper optical telescope. We place upper limits for minute-time-scale fast optical transient rates for a range of depths and time-scales. Finally, we demonstrate that optical g-band light-curve behaviour alone cannot discriminate between confirmed extragalactic fast transients such as prompt GRB flashes and Galactic stellar flares.

    more » « less
  5. null (Ed.)
    ABSTRACT Transitional millisecond pulsars are millisecond pulsars that switch between a rotation-powered millisecond pulsar state and an accretion-powered X-ray binary state, and are thought to be an evolutionary stage between neutron star low-mass X-ray binaries and millisecond pulsars. So far, only three confirmed systems have been identified in addition to a handful of candidates. We present the results of a multiwavelength study of the low-mass X-ray binary NGC 6652B in the globular cluster NGC 6652, including simultaneous radio and X-ray observations taken by the Karl G. Jansky Very Large Array and the Chandra X-ray Observatory, and optical spectroscopy and photometry. This source is the second brightest X-ray source in NGC 6652 ($L_{\textrm {X}}\sim 1.8 \times 10^{34}{\, \mathrm{erg\, s}^{-1}}$) and is known to be variable. We observe several X-ray flares over the duration of our X-ray observations, in addition to persistent radio emission and occasional radio flares. Simultaneous radio and X-ray data show no clear evidence of anticorrelated variability. Optical spectra of NGC 6652B indicate variable, broad H α emission that transitions from double-peaked emission to absorption over a time-scale of hours. We consider a variety of possible explanations for the source behaviour, and conclude that based on the radio and X-ray luminosities, short time-scale variability and X-ray flaring, and optical spectra, NGC 6652B is best explained as a transitional millisecond pulsar candidate that displays prolonged X-ray flaring behaviour. However, this could only be confirmed with observations of a change to the rotation-powered millisecond pulsar state. 
    more » « less