Trustworthy and Efficient Digital Twins in Post-Quantum Era with Hybrid Hardware-Assisted Signatures
                        
                    
                    
                    
                    
                            Digital Twins (DT) virtually model cyber-physical objects via sensory inputs by simulating or monitoring their behavior. Therefore, DTs usually harbor vast quantities of Internet of Things (IoT) components (e.g., sensors) that gather, process, and offload sensitive information (e.g., healthcare) to the cloud. It is imperative to ensure the trustworthiness of such sensitive information with long-term and compromise-resilient security guarantees. Digital signatures provide scalable authentication and integrity with non-repudiation and are vital tools for DTs. Post-quantum cryptography (PQC) and forward-secure signatures are two fundamental tools to offer long-term security and breach resiliency. However, NIST-PQC signature standards are exorbitantly costly for embedded DT components and are infeasible when forward-security is also considered. Moreover, NIST-PQC signatures do not admit aggregation, which is a highly desirable feature to mitigate the heavy storage and transmission burden in DTs. Finally, NIST recommends hybrid PQ solutions to enable cryptographic agility and transitional security. Yet, there is a significant gap in the state of the art in the achievement of all these advanced features simultaneously. Therefore, there is a significant need for lightweight digital signatures that offer compromise resiliency and compactness while permitting transitional security into the PQ era for DTs. We create a series of highly lightweight digital signatures called Hardware-ASisted Efficient Signature (HASES) that meets the above requirements. The core ofHASES is a hardware-assisted cryptographic commitment construct oracle (CCO) that permits verifiers to obtain expensive commitments without signer interaction. We created threeHASES schemes:PQ-HASES is a forward-secure PQ signature,LA-HASES is an efficient aggregate Elliptic-Curve signature, andHY-HASES is a novel hybrid scheme that combinesPQ-HASES andLA-HASES with novel strong nesting and sequential aggregation.HASES does not require a secure-hardware on the signer. We prove thatHASES schemes are secure and implemented them on commodity hardware and and 8-bit AVR ATmega2560. Our experiments confirm thatPQ-HASES andLA-HASES are two magnitudes of times more signer efficient than their PQ and conventional-secure counterparts, respectively.HY-HASES outperforms NIST PQC and conventional signature combinations, offering a standard-compliant transitional solution for emerging DTs. We open-sourceHASES schemes for public-testing and adaptation. 
                        more » 
                        « less   
                     An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    