Lenders, V; Blezinger, E; Jang-Jaccard; J; Mulder, V; Mermoud, A
(Ed.)
Emerging satellite networks integrated with terrestrial and aerial systems form a key part of next-generation infrastructures supporting the Internet of Everything (IoE). This chapter outlines the current status of PQC-based authentication in integrated Space-Aerial-Terrestrial Networks (SATIN), highlighting the technical challenges in achieving quantum-resilient security within constrained and complex environments. While quantum computing necessitates migration to post-quantum cryptography (PQC), existing standards often demand resources that are unsuited for SATIN’s limited hardware and fragile links. We analyze leading NIST PQC signature and key encapsulation schemes in the SATIN context, evaluating trade-offs in computational cost, signature size, and protocol compatibility. Emerging directions, including broader algorithm evaluations, advanced protocol integrations (e.g., EMSS and NIST-PQC with terrestrial backbone, PQ group key management), and some alternative PQ technologies are discussed. Addressing these challenges requires advanced simulation and experimental frameworks to enable scalable, practical, and quantum-resilient secure communications in future integrated networks.
more »
« less
An official website of the United States government

