Photorespiration can limit gross primary productivity in terrestrial plants. The rate of photorespiration relative to carbon fixation increases with temperature and decreases with atmospheric [CO2]. However, the extent to which this rate varies in the environment is unclear. Here, we introduce a proxy for relative photorespiration rate based on the clumped isotopic composition of methoxyl groups (R–O–CH3) in wood. Most methoxyl C–H bonds are formed either during photorespiration or the Calvin cycle and thus their isotopic composition may be sensitive to the mixing ratio of these pathways. In water-replete growing conditions, we find that the abundance of the clumped isotopologue13CH2D correlates with temperature (18–28 °C) and atmospheric [CO2] (280–1000 ppm), consistent with a common dependence on relative photorespiration rate. When applied to a global dataset of wood, we observe global trends of isotopic clumping with climate and water availability. Clumped isotopic compositions are similar across environments with temperatures below ~18 °C. Above ~18 °C, clumped isotopic compositions in water-limited and water-replete trees increasingly diverge. We propose that trees from hotter climates photorespire substantially more than trees from cooler climates. How increased photorespiration is managed depends on water availability: water-replete trees export more photorespiratory metabolites to lignin whereas water-limited trees either export fewer overall or direct more to other sinks that mitigate water stress. These disparate trends indicate contrasting responses of photorespiration rate (and thus gross primary productivity) to a future high-[CO2] world. This work enables reconstructing photorespiration rates in the geologic past using fossil wood.
more »
« less
Increased activity of core photorespiratory enzymes and CO2 transfer conductances are associated with higher and more optimal photosynthetic rates under elevated temperatures in the extremophile Rhazya stricta
Abstract Increase photorespiration and optimising intrinsic water use efficiency are unique challenges to photosynthetic carbon fixation at elevated temperatures. To determine how plants can adapt to facilitate high rates of photorespiration at elevated temperatures while also maintaining water‐use efficiency, we performed in‐depth gas exchange and biochemical assays of the C3extremophile,Rhazya stricta. These results demonstrate thatR. strictasupports higher rates of photorespiration under elevated temperatures and that these higher rates of photorespiration correlate with increased activity of key photorespiratory enzymes; phosphoglycolate phosphatase and catalase. The increased photorespiratory enzyme activities may increase the overall capacity of photorespiration by reducing enzymatic bottlenecks and allowing minimal inhibitor accumulation under high photorespiratory rates. Additionally, we found the CO2transfer conductances (stomatal and mesophyll) are re‐allocated to increase the water‐use efficiency inR. strictabut not necessarily the photosynthetic response to temperature. These results suggest important adaptive strategies inR. strictathat maintain photosynthetic rates under elevated temperatures with optimal water loss. The strategies found in R. stricta may inform breeding and engineering efforts in other C3species to improve photosynthetic efficiency at high temperatures.
more »
« less
- Award ID(s):
- 2030337
- PAR ID:
- 10492431
- Publisher / Repository:
- Plant, Cell & Environment
- Date Published:
- Journal Name:
- Plant, Cell & Environment
- Volume:
- 46
- Issue:
- 12
- ISSN:
- 0140-7791
- Page Range / eLocation ID:
- 3704 to 3720
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary As global temperatures rise, improving crop yields will require enhancing the thermotolerance of crops. One approach for improving thermotolerance is using bioengineering to increase the thermostability of enzymes catalysing essential biological processes. Photorespiration is an essential recycling process in plants that is integral to photosynthesis and crop growth. The enzymes of photorespiration are targets for enhancing plant thermotolerance as this pathway limits carbon fixation at elevated temperatures. We explored the effects of temperature on the activity of the photorespiratory enzyme glycerate kinase (GLYK) from various organisms and the homologue from the thermophilic algaCyanidioschyzon merolaewas more thermotolerant than those from mesophilic plants, includingArabidopsis thaliana. To understand enzyme features underlying the thermotolerance ofC. merolaeGLYK (CmGLYK), we performed molecular dynamics simulations using AlphaFold‐predicted structures, which revealed greater movement of loop regions of mesophilic plant GLYKs at higher temperatures compared to CmGLYK. Based on these simulations, hybrid proteins were produced and analysed. These hybrid enzymes contained loop regions from CmGLYK replacing the most mobile corresponding loops of AtGLYK. Two of these hybrid enzymes had enhanced thermostability, with melting temperatures increased by 6 °C. One hybrid with three grafted loops maintained higher activity at elevated temperatures. Whilst this hybrid enzyme exhibited enhanced thermostability and a similar Kmfor ATP compared to AtGLYK, its Kmfor glycerate increased threefold. This study demonstrates that molecular dynamics simulation‐guided structure‐based recombination offers a promising strategy for enhancing the thermostability of other plant enzymes with possible application to increasing the thermotolerance of plants under warming climates.more » « less
-
Abstract Photorespiration recovers carbon that would be otherwise lost following the oxygenation reaction of rubisco and production of glycolate. Photorespiration is essential in plants and recycles glycolate into usable metabolic products through reactions spanning the chloroplast, mitochondrion, and peroxisome. Catalase in peroxisomes plays an important role in this process by disproportionating H2O2resulting from glycolate oxidation into O2and water. We hypothesize that catalase in the peroxisome also protects against nonenzymatic decarboxylations between hydrogen peroxide and photorespiratory intermediates (glyoxylate and/or hydroxypyruvate). We test this hypothesis by detailed gas exchange and biochemical analysis ofArabidopsis thalianamutants lacking peroxisomal catalase. Our results strongly support this hypothesis, with catalase mutants showing gas exchange evidence for an increased stoichiometry of CO2release from photorespiration, specifically an increase in the CO2compensation point, a photorespiratory‐dependent decrease in the quantum efficiency of CO2assimilation, increase in the12CO2released in a13CO2background, and an increase in the postillumination CO2burst. Further metabolic evidence suggests this excess CO2release occurred via the nonenzymatic decarboxylation of hydroxypyruvate. Specifically, the catalase mutant showed an accumulation of photorespiratory intermediates during a transient increase in rubisco oxygenation consistent with this hypothesis. Additionally, end products of alternative hypotheses explaining this excess release were similar between wild type and catalase mutants. Furthermore, the calculated rate of hydroxypyruvate decarboxylation in catalase mutant is much higher than that of glyoxylate decarboxylation. This work provides evidence that these nonenzymatic decarboxylation reactions, predominately hydroxypyruvate decarboxylation, can occur in vivo when photorespiratory metabolism is genetically disrupted.more » « less
-
Abstract A mechanistic understanding of plant photosynthetic response is needed to reliably predict changes in terrestrial carbon (C) gain under conditions of chronically elevated atmospheric nitrogen (N) deposition. Here, using 2,683 observations from 240 journal articles, we conducted a global meta‐analysis to reveal effects of N addition on 14 photosynthesis‐related traits and affecting moderators. We found that across 320 terrestrial plant species, leaf N was enhanced comparably on mass basis (Nmass, +18.4%) and area basis (Narea, +14.3%), with no changes in specific leaf area or leaf mass per area. Total leaf area (TLA) was increased significantly, as indicated by the increases in total leaf biomass (+46.5%), leaf area per plant (+29.7%), and leaf area index (LAI, +24.4%). To a lesser extent than for TLA, N addition significantly enhanced leaf photosynthetic rate per area (Aarea, +12.6%), stomatal conductance (gs, +7.5%), and transpiration rate (E, +10.5%). The responses ofAareawere positively related with that ofgs, with no changes in instantaneous water‐use efficiency and only slight increases in long‐term water‐use efficiency (+2.5%) inferred from13C composition. The responses of traits depended on biological, experimental, and environmental moderators. As experimental duration and N load increased, the responses of LAI andAareadiminished while that ofEincreased significantly. The observed patterns of increases in both TLA andEindicate that N deposition will increase the amount of water used by plants. Taken together, N deposition will enhance gross photosynthetic C gain of the terrestrial plants while increasing their water loss to the atmosphere, but the effects on C gain might diminish over time and that on plant water use would be amplified if N deposition persists.more » « less
-
null (Ed.)Photorespiration, or C2 photosynthesis, is generally considered a futile cycle that potentially decreases photosynthetic carbon fixation by more than 25%. Nonetheless, many essential processes, such as nitrogen assimilation, C1 metabolism, and sulfur assimilation, depend on photorespiration. Most studies of photosynthetic and photorespiratory reactions are conducted with magnesium as the sole metal cofactor despite many of the enzymes involved in these reactions readily associating with manganese. Indeed, when manganese is present, the energy efficiency of these reactions may improve. This review summarizes some commonly used methods to quantify photorespiration, outlines the influence of metal cofactors on photorespiratory enzymes, and discusses why photorespiration may not be as wasteful as previously believed.more » « less
An official website of the United States government

