Abstract Using the novel semi-numerical code for reionization AMBER, we model the patchy kinetic Sunyaev–Zel’dovich (kSZ) effect by directly specifying the reionization history with the redshift midpointzmid, duration Δz, and asymmetryAz. We further control the ionizing sources and radiation through the minimum halo massMhand the radiation mean free pathλmfp. AMBER reproduces the free-electron number density and the patchy kSZ power spectrum of radiation–hydrodynamic simulations at the target resolution (1 Mpch−1) with matched reionization parameters. With a suite of (2 Gpc/h)3simulations using AMBER, we first constrain the redshift midpoint 6.0 <zmid< 8.9 using the Planck 2018 Thomson optical depth result (95% CL). Then, assumingzmid= 8, we find that the amplitude of scales linearly with the duration of reionization Δzand is consistent with the 1σupper limit from South Pole Telescope (SPT) results up to Δz< 5.1 (Δzencloses 5%–95% ionization). Moreover, a shorterλmfpcan lead to a ∼10% lower and a flatter slope in the scaling relation, thereby affecting the constraints on Δzatℓ= 3000. Allowingzmidandλmfpto vary simultaneously, we get spectra consistent with the SPT result (95% CL) up to Δz= 12.8 (butAz> 8 is needed to ensure the end of reionization beforez= 5.5). We show that constraints on the asymmetry require ∼0.1μk2measurement accuracy at multipoles other thanℓ= 3000. Finally, we find that the amplitude and shape of the kSZ spectrum are only weakly sensitive toMhunder a fixed reionization history and radiation mean free path.
more »
« less
Probing Ultralate Reionization: Direct Measurements of the Mean Free Path over 5 < z < 6
Abstract The mean free path of ionizing photons,λmfp, is a critical parameter for modeling the intergalactic medium (IGM) both during and after reionization. We present direct measurements ofλmfpfrom QSO spectra over the redshift range 5 <z< 6, including the first measurements atz≃ 5.3 and 5.6. Our sample includes data from the XQR-30 VLT large program, as well as new Keck/ESI observations of QSOs nearz∼ 5.5, for which we also acquire new [Cii] 158μm redshifts with ALMA. By measuring the Lyman continuum transmission profile in stacked QSO spectra, we find , , , and pMpc atz= 5.08, 5.31, 5.65, and 5.93, respectively. Our results demonstrate thatλmfpincreases steadily and rapidly with time over 5 <z< 6. Notably, we find thatλmfpdeviates significantly from predictions based on a fully ionized and relaxed IGM as late asz= 5.3. By comparing our results to model predictions and indirectλmfpconstraints based on IGM Lyαopacity, we find that the evolution ofλmfpis consistent with scenarios wherein the IGM is still undergoing reionization and/or retains large fluctuations in the ionizing UV background well below redshift 6.
more »
« less
- PAR ID:
- 10492510
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- The Astrophysical Journal
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 955
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 115
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Cosmic reionization was the last major phase transition of hydrogen from neutral to highly ionized in the intergalactic medium (IGM). Current observations show that the IGM is significantly neutral atz> 7 and largely ionized byz∼ 5.5. However, most methods to measure the IGM neutral fraction are highly model dependent and are limited to when the volume-averaged neutral fraction of the IGM is either relatively low ( ) or close to unity ( ). In particular, the neutral fraction evolution of the IGM at the critical redshift range ofz= 6–7 is poorly constrained. We present new constraints on atz∼ 5.1–6.8 by analyzing deep optical spectra of 53 quasars at 5.73 <z< 7.09. We derive model-independent upper limits on the neutral hydrogen fraction based on the fraction of “dark” pixels identified in the Lyαand Lyβforests, without any assumptions on the IGM model or the intrinsic shape of the quasar continuum. They are the first model-independent constraints on the IGM neutral hydrogen fraction atz∼ 6.2–6.8 using quasar absorption measurements. Our results give upper limits of (1σ), (1σ), and (1σ). The dark pixel fractions atz> 6.1 are consistent with the redshift evolution of the neutral fraction of the IGM derived from Planck 2018.more » « less
-
Abstract We present thez≈ 6 type-1 quasar luminosity function (QLF), based on the Pan-STARRS1 (PS1) quasar survey. The PS1 sample includes 125 quasars atz≈ 5.7–6.2, with −28 ≲M1450≲ −25. With the addition of 48 fainter quasars from the SHELLQs survey, we evaluate thez≈ 6 QLF over −28 ≲M1450≲ −22. Adopting a double power law with an exponential evolution of the quasar density (Φ(z) ∝ 10k(z−6);k= −0.7), we use a maximum likelihood method to model our data. We find a break magnitude of , a faint-end slope of , and a steep bright-end slope of . Based on our new QLF model, we determine the quasar comoving spatial density atz≈ 6 to be . In comparison with the literature, we find the quasar density to evolve with a constant value ofk≈ −0.7, fromz≈ 7 toz≈ 4. Additionally, we derive an ionizing emissivity of , based on the QLF measurement. Given standard assumptions, and the recent measurement of the mean free path by Becker et al. atz≈ 6, we calculate an Hiphotoionizing rate of ΓH I(z= 6) ≈ 6 × 10−16s−1, strongly disfavoring a dominant role of quasars in hydrogen reionization.more » « less
-
Abstract The cluster mass–richness relation (MRR) is an observationally efficient and potentially powerful cosmological tool for constraining the matter density Ωmand the amplitude of fluctuationsσ8using the cluster abundance technique. We derive the MRR relation usingGalWCat19, a publicly available galaxy cluster catalog we created from the Sloan Digital Sky Survey-DR13 spectroscopic data set. In the MRR, cluster mass scales with richness as . We find that the MRR we derive is consistent with both the IllustrisTNG and mini-Uchuu cosmological numerical simulations, with a slope ofβ≈ 1. We use the MRR we derived to estimate cluster masses from theGalWCat19catalog, which we then use to set constraints on Ωmandσ8. Utilizing the all-member MRR, we obtain constraints of Ωm= andσ8= , and utilizing the red member MRR only, we obtain Ωm= andσ8= . Our constraints on Ωmandσ8are consistent and very competitive with the Planck 2018 results.more » « less
-
Abstract We confirm the planetary nature of TOI-5344 b as a transiting giant exoplanet around an M0-dwarf star. TOI-5344 b was discovered with the Transiting Exoplanet Survey Satellite photometry and confirmed with ground-based photometry (the Red Buttes Observatory 0.6 m telescope), radial velocity (the Habitable-zone Planet Finder), and speckle imaging (the NN-Explore Exoplanet Stellar Speckle Imager). TOI-5344 b is a Saturn-like giant planet (ρ= 0.80 g cm−3) with a planetary radius of 9.7 ± 0.5R⊕(0.87 ± 0.04RJup) and a planetary mass of (0.42 ). It has an orbital period of days and an orbital eccentricity of . We measure a high metallicity for TOI-5344 of [Fe/H] = 0.48 ± 0.12, where the high metallicity is consistent with expectations from formation through core accretion. We compare the metallicity of the M-dwarf hosts of giant exoplanets to that of M-dwarf hosts of nongiants (≲8R⊕). While the two populations appear to show different metallicity distributions, quantitative tests are prohibited by various sample caveats.more » « less
An official website of the United States government

