Abstract We present a catalog of 1.4 million photometrically selected quasar candidates in the southern hemisphere over the ∼5000 deg2Dark Energy Survey (DES) wide survey area. We combine optical photometry from the DES second data release (DR2) with available near-infrared (NIR) and the all-sky unWISE mid-infrared photometry in the selection. We build models of quasars, galaxies, and stars with multivariate skew-tdistributions in the multidimensional space of relative fluxes as functions of redshift (or color for stars) and magnitude. Our selection algorithm assigns probabilities for quasars, galaxies, and stars and simultaneously calculates photometric redshifts (photo-z) for quasar and galaxy candidates. Benchmarking on spectroscopically confirmed objects, we successfully classify (with photometry) 94.7% of quasars, 99.3% of galaxies, and 96.3% of stars when all IR bands (NIRYJHKand WISE W1W2) are available. The classification and photo-zregression success rates decrease when fewer bands are available. Our quasar (galaxy) photo-zquality, defined as the fraction of objects with the difference between the photo-z zpand the spectroscopic redshiftzs, ∣Δz∣ ≡ ∣zs−zp∣/(1 +zs) ≤ 0.1, is 92.2% (98.1%) when all IR bands are available, decreasing to 72.2% (90.0%) using optical DES data only. Our photometric quasar catalog achieves an estimated completeness of 89% and purity of 79% atr< 21.5 (0.68 million quasar candidates), with reduced completeness and purity at 21.5 <r≲ 24. Among the 1.4 million quasar candidates, 87,857 have existing spectra, and 84,978 (96.7%) of them are spectroscopically confirmed quasars. Finally, we provide quasar, galaxy, and star probabilities for all (0.69 billion) photometric sources in the DES DR2 coadded photometric catalog.
more »
« less
Predicting the Yields of z > 6.5 Quasar Surveys in the Era of Roman and Rubin
Abstract About 70 luminous quasars discovered atz> 6.5 are strongly biased toward the bright end, thus not providing a comprehensive view of quasar abundance beyond the cosmic dawn. We present the predicted results of the Roman/Rubin high-redshift quasar survey, yielding 3 times more, 2–4 mag deeper quasar samples, probing high-redshift quasars across a broad range of luminosities, especially faint quasars atLbol∼ 1010L⊙orM1450∼ −22, which are currently poorly explored. We include high-zquasars, galactic dwarfs, and low-zcompact galaxies with similar colors as quasar candidates. We create mock catalogs based on population models to evaluate selection completeness and efficiency. We utilize the classical color dropout method in thezandYbands to select primary quasar candidates, followed up with the Bayesian selection method to identify quasars. We show that overall selection completeness >80% and efficiency ∼10% at 6.5 <z< 9, with 180 quasars atz> 6.5, 20 atz> 7.5, and 2 atz> 8.5. The quasar yields depend sensitively on the assumed quasar luminosity shape and redshift evolution. Brown dwarf rejection through proper motion up to 50% can be made for stars brighter than 25 mag, low-zgalaxies dominate at fainter magnitude. Our results show that Roman/Rubin are able to discover a statistical sample of the earliest and faintest quasars in the Universe. The new valuable data sets are worth follow-up studies with JWST and Extremely Large Telescopes to determine the quasar luminosity function faint end slope and constraint the supermassive black holes growth in the early Universe.
more »
« less
- Award ID(s):
- 1908284
- PAR ID:
- 10492511
- Publisher / Repository:
- The Astrophysical Journal
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 956
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 52
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The [Cii] 158μm emission line and the underlying far-infrared (FIR) dust continuum are important tracers for studying star formation and kinematic properties of early galaxies. We present a survey of the [Cii] emission lines and FIR continua of 31 luminous quasars atz> 6.5 using the Atacama Large Millimeter Array (ALMA) and the NOrthern Extended Millimeter Array at sub-arcsec resolution. This survey more than doubles the number of quasars with [Cii] and FIR observations at these redshifts and enables statistical studies of quasar host galaxies deep into the epoch of reionization. We detect [Cii] emission in 27 quasar hosts with a luminosity range ofL[CII]= (0.3–5.5) × 109L⊙and detect the FIR continuum of 28 quasar hosts with a luminosity range ofLFIR= (0.5–13.0) × 1012L⊙. BothL[CII]andLFIRare correlated (ρ≃ 0.4) with the quasar bolometric luminosity, albeit with substantial scatter. The quasar hosts detected by ALMA are clearly resolved with a median diameter of ∼5 kpc. About 40% of the quasar host galaxies show a velocity gradient in [Cii] emission, while the rest show either dispersion-dominated or disturbed kinematics. Basic estimates of the dynamical masses of the rotation-dominated host galaxies yieldMdyn= (0.1–7.5) × 1011M⊙. Considering our findings alongside those of literature studies, we found that the ratio betweenMBHandMdynis about 10 times higher than that of localMBH–Mdynrelation on average but with substantial scatter (the ratio difference ranging from ∼0.6 to 60) and large uncertainties.more » « less
-
Abstract The identification of bright quasars atz≳ 6 enables detailed studies of supermassive black holes, massive galaxies, structure formation, and the state of the intergalactic medium within the first billion years after the Big Bang. We present the spectroscopic confirmation of 55 quasars at redshifts 5.6 <z< 6.5 and UV magnitudes −24.5 <M1450< −28.5 identified in the optical Pan-STARRS1 and near-IR VIKING surveys (48 and 7, respectively). Five of these quasars have independently been discovered in other studies. The quasar sample shows an extensive range of physical properties, including 17 objects with weak emission lines, 10 broad absorption line quasars, and 5 objects with strong radio emission (radio-loud quasars). There are also a few notable sources in the sample, including a blazar candidate atz= 6.23, a likely gravitationally lensed quasar atz= 6.41, and az= 5.84 quasar in the outskirts of the nearby (D∼ 3 Mpc) spiral galaxy M81. The blazar candidate remains undetected in NOEMA observations of the [Cii]and underlying emission, implying a star formation rate <30–70M⊙yr−1. A significant fraction of the quasars presented here lies at the foundation of the first measurement of thez∼ 6 quasar luminosity function from Pan-STARRS1 (introduced in a companion paper). These quasars will enable further studies of the high-redshift quasar population with current and future facilities.more » « less
-
Abstract We present a mock catalog of gravitationally-lensed quasars atzqso< 7.5 with simulated images for the Rubin Observatory Legacy Survey of Space and Time (LSST). We adopt recent measurements of quasar-luminosity functions to model the quasar population, and use the CosmoDC2 mock galaxy catalog to model the deflector galaxies, which successfully reproduces the observed galaxy-velocity dispersion functions up tozd∼ 1.5. The mock catalog is highly complete for lensed quasars with Einstein radiusθE> 0.″07 and quasar absolute magnitudeMi< − 20. We estimate that there are ∼103lensed quasars discoverable in current imaging surveys, and LSST will increase this number to ∼ 2.4 × 103. Most of the lensed quasars have image separation Δθ> 0.″5, which will at least be marginally resolved in LSST images with seeing of ∼0.″7. There will be ∼200 quadruply-lensed quasars discoverable in the LSST. The fraction of quad lenses among all discoverable lensed quasars is about ∼10%–15%, and this fraction decreases with survey depth. This mock catalog shows a large diversity in the observational features of lensed quasars, in terms of lensing separation and quasar-to-deflector flux ratio. We discuss possible strategies for a complete search of lensed quasars in the LSST era.more » « less
-
Abstract The statistics of galactic-scale quasar pairs can elucidate our understanding of the dynamical evolution of supermassive black hole (SMBH) pairs, the duty cycles of quasar activity in mergers, or even the nature of dark matter, but they have been challenging to measure at cosmic noon, the prime epoch of massive galaxy and SMBH formation. Here we measure a double quasar fraction of ∼6.2 ± 0.5 × 10−4integrated over ∼0.″3–3″ separations (projected physical separations of ∼3–30 kpc atz∼ 2) in luminous (Lbol> 1045.8erg s−1) unobscured quasars at 1.5 <z< 3.5 using Gaia EDR3-resolved pairs around SDSS DR16 quasars. The measurement was based on a sample of 60 Gaia-resolved double quasars (out of 487 Gaia pairs dominated by quasar+star superpositions) at these separations, corrected for pair completeness in Gaia, which we quantify as functions of pair separation, magnitude of the primary, and magnitude contrast. The double quasar fraction increases toward smaller separations by a factor of ∼5 over these scales. The division between physical quasar pairs and lensed quasars in our sample is currently unknown, requiring dedicated follow-up observations (in particular, deep, subarcsecond-resolution IR imaging for the closest pairs). Intriguingly, at this point, the observed pair statistics are in rough agreement with theoretical predictions both for the lensed quasar population in mock catalogs and for dual quasars in cosmological hydrodynamic simulations. Upcoming wide-field imaging/spectroscopic space missions such as Euclid, CSST, and Roman, combined with targeted follow-up observations, will conclusively measure the abundances and host galaxy properties of galactic-scale quasar pairs, offset AGNs, and subarcsecond lensed quasars across cosmic time.more » « less
An official website of the United States government

