skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A derived weedy rice × ancestral cultivar cross identifies evolutionarily relevant weediness QTLs
Abstract Weedy rice (Oryzaspp.) is a weedy relative of the cultivated rice that competes with the crop and causes significant production loss. The BHA (blackhull awned) US weedy rice group has evolved fromauscultivated rice and differs from its ancestors in several important weediness traits, including flowering time, plant height and seed shattering. Prior attempts to determine the genetic basis of weediness traits in plants using linkage mapping approaches have not often considered weed origins. However, the timing of divergence between crossed parents can affect the detection of quantitative trait loci (QTL) relevant to the evolution of weediness. Here, we used a QTL‐seq approach that combines bulked segregant analysis and high‐throughput whole genome resequencing to map the three important weediness traits in an F2population derived from a cross between BHA weedy rice with an ancestralauscultivar. We compared these QTLs with those previously detected in a cross of BHA with a more distantly related crop,indica. We identified multiple QTLs that overlapped with regions under selection during the evolution of weedy BHA rice and some candidate genes possibly underlying the evolution weediness traits in BHA. We showed that QTLs detected with ancestor–descendant crosses are more likely to be involved in the evolution of weediness traits than those detected from crosses of more diverged taxa.  more » « less
Award ID(s):
1947609
PAR ID:
10492531
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Molecular Ecology
Date Published:
Journal Name:
Molecular Ecology
Volume:
32
Issue:
22
ISSN:
0962-1083
Page Range / eLocation ID:
5971 to 5985
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY The repeated evolution of high seed shattering during multiple independent de‐domestications of cultivated Asian rice (Oryza sativa) into weedy rice (Oryzaspp.) is a prime example of convergent evolution. Weedy rice populations converge in histological features of the abscission zone (AZ), a crucial structure for seed abscission, while ancestral cultivated rice populations exhibit varied AZ morphology and levels of shattering. However, the genetic bases of these phenotypic patterns remain unclear. We examined the expression profiles of the AZ region and its surrounding tissues at three developmental stages in two low‐shattering cultivars ofausandtemperate japonicadomesticated groups and in two genotypes of their derived high‐shattering weed groups, Blackhull Awned (BHA) and Spanish Weedy Rice (SWR), respectively. Consistent with the greater alteration of AZ morphology during the de‐domestication of SWR than BHA, fewer genes exhibited a comparable AZ‐region exclusive expression pattern between weed and crop in thetemperate japonicalineage than in theauslineage. Transcription factors related to the repression of lignin and secondary cell wall deposition, such as,OsWRKY102andOsXND‐1‐like, along with certain known shattering genes involved in AZ formation, likely played a role in maintaining AZ region identity in both lineages. Meanwhile, most genes exhibiting AZ‐region exclusive expression patterns do not overlap between the two lineages and the genes exhibiting differential expression in the AZ region between weed and crop across the two lineages are enriched for different gene ontology terms. Our findings suggest genetic flexibility in shaping AZ morphology, while genetic constraints on AZ identity determination in these two lineages. 
    more » « less
  2. Abstract High reproductive compatibility between crops and their wild relatives can provide benefits for crop breeding but also poses risks for agricultural weed evolution. Weedy rice is a feral relative of rice that infests paddies and causes severe crop losses worldwide. In regions of tropical Asia where the wild progenitor of rice occurs, weedy rice could be influenced by hybridization with the wild species. Genomic analysis of this phenomenon has been very limited. Here we use whole genome sequence analyses of 217 wild, weedy and cultivated rice samples to show that wild rice hybridization has contributed substantially to the evolution of Southeast Asian weedy rice, with some strains acquiring weed-adaptive traits through introgression from the wild progenitor. Our study highlights how adaptive introgression from wild species can contribute to agricultural weed evolution, and it provides a case study of parallel evolution of weediness in independently-evolved strains of a weedy crop relative. 
    more » « less
  3. ABSTRACT Weedy rice is a close relative of cultivated rice (Oryza sativa) that infests rice fields worldwide and drastically reduces yields. To combat this agricultural pest, rice farmers in the southern US began to grow herbicide‐resistant (HR) rice cultivars in the early 2000s, which permitted the application of herbicides that selectively targeted weedy rice without harming the crop. The widespread adoption of HR rice coincided with increased reliance on hybrid rice cultivars in place of traditional inbred varieties. Although both cultivated and weedy rice are predominantly self‐fertilising, the combined introductions of HR and hybrid rice dramatically altered the opportunities and selective pressure for crop‐weed hybridization and adaptive introgression. In this study, we generated genotyping‐by‐sequencing data for 178 weedy rice samples collected from across the rice growing region of the southern US; these were analysed together with previously published rice and weedy rice genome sequences to determine the recent genomic and population genetic consequences of adaptive introgression and selection for herbicide resistance in US weedy rice populations. We find a reshaped geographical structure of southern US weedy rice as well as purging of crop‐derived alleles in some weed strains of crop‐weed hybrid origin. Furthermore, we uncover evidence that related weedy rice strains have made use of different genetic mechanisms to respond to selection. Lastly, we identify widespread presence of HR alleles in both hybrid‐derived and nonadmixed samples, which further supports an overall picture of weedy rice evolution and adaptation through diverse genetic mechanisms. 
    more » « less
  4. Rice resistance (R) genes have been effectively deployed to prevent blast disease caused by the fungal pathogen Magnaporthe oryzae, one of the most serious threats for stable rice production worldwide. Weedy rice competing with cultivated rice may carry novel or lost R genes. The quantitative trait locus qBR12.3b was previously mapped between two single nucleotide polymorphism markers at the 10,633,942-bp and 10,820,033-bp genomic positions in a black-hull-awned (BHA) weed strain using a weed-crop-mapping population under greenhouse conditions. In this study, we found a portion of the known resistance gene Ptr encoding a protein with four armadillo repeats and confers a broad spectrum of blast resistance. We then analyzed the sequences of the Ptr gene from weedy rice, PtrBHA, and identified a unique amino acid glutamine at protein position 874. Minor changes of protein conformation of the PtrBHAgene were predicted through structural analysis of PtrBHA, suggesting that the product of PtrBHAis involved in disease resistance. A gene-specific codominant marker HJ17-13 from PtrBHAwas then developed to distinguish alleles in weeds and crops. The PtrBHAgene existed in 207 individuals of the same mapping population, where qBR12.3b was mapped using this gene-specific marker. Disease reactions of 207 individuals and their parents to IB-33 were evaluated. The resistant individuals had PtrBHAwhereas the susceptible individuals did not, suggesting that HJ17-13 is reliable to predict qBR12.3b. Taken together, this newly developed marker, and weedy rice genotypes carrying qBR12.3b, are useful for blast improvement using marker assisted selection. 
    more » « less
  5. The seed shattering trait has been repeatedly reshaped during rice evolution. Reduced in cultivated rice and increased in weedy rice, shattering is of great agronomic importance because of its association with yield losses. Since its first descriptions, the phenotypic patterns and the genetic regulation of cultivated and weedy rice seed shattering have been extensively studied, with a variety of methods and techniques. The aim of this review is to discuss and recommend the most suitable experimental methods for phenotypic and molecular evaluation of seed shattering in cultivated and weedy rice. Rice seed shattering must be quantified, preferably, by breaking tensile strength (BTS) assays, because other methods are more prone to human errors. The evaluation time is particularly important, and the developmental stages of the panicles measured need to be recorded. QTL analyses and GWAS studies are suitable for discovery of genes influencing shattering, but the resulting genes may only be relevant in the parental lines or the populations used. The variety of cultivated rice and evolutionary origin of weedy rice accessions has a great influence on results of rice seed shattering phenotypic and genotypic analyses and needs to always be taken into account. 
    more » « less