As the field of computational cognitive neuroscience continues to expand and generate new theories, there is a growing need for more advanced methods to test the hypothesis of brain-behavior relationships. Recent progress in Bayesian cognitive modeling has enabled the combination of neural and behavioral models into a single unifying framework. However, these approaches require manual feature extraction, and lack the capability to discover previously unknown neural features in more complex data. Consequently, this would hinder the expressiveness of the models. To address these challenges, we propose a Neurocognitive Variational Autoencoder (NCVA) to conjoin high-dimensional EEG with a cognitive model in both generative and predictive modeling analyses. Importantly, our NCVA enables both the prediction of EEG signals given behavioral data and the estimation of cognitive model parameters from EEG signals. This novel approach can allow for a more comprehensive understanding of the triplet relationship between behavior, brain activity, and cognitive processes.
more »
« less
A tutorial on fitting joint models of M/EEG and behavior to understand cognition
Abstract We present motivation and practical steps necessary to find parameter estimates of joint models of behavior and neural electrophysiological data. This tutorial is written for researchers wishing to build joint models of human behavior and scalp and intracranial electroencephalographic (EEG) or magnetoencephalographic (MEG) data, and more specifically those researchers who seek to understand human cognition. Although these techniques could easily be applied to animal models, the focus of this tutorial is on human participants. Joint modeling of M/EEG and behavior requires some knowledge of existing computational and cognitive theories, M/EEG artifact correction, M/EEG analysis techniques, cognitive modeling, and programming for statistical modeling implementation. This paper seeks to give an introduction to these techniques as they apply to estimating parameters from neurocognitive models of M/EEG and human behavior, and to evaluate model results and compare models. Due to our research and knowledge on the subject matter, our examples in this paper will focus on testing specific hypotheses in human decision-making theory. However, most of the motivation and discussion of this paper applies across many modeling procedures and applications. We provide Python (and linked R) code examples in the tutorial and appendix. Readers are encouraged to try the exercises at the end of the document.
more »
« less
- PAR ID:
- 10492575
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Behavior Research Methods
- ISSN:
- 1554-3528
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Understanding how people interact with search interfaces is core to the field of Interactive Information Retrieval (IIR). While various models have been proposed (e.g., Belkin's ASK, Berry picking, Everyday-life information seeking, Information foraging theory, Economic theory, etc.), they have largely ignored the impact of cognitive biases on search behaviour and performance. A growing body of empirical work exploring how people's cognitive biases influence search and judgments, has led to the development of new models of search that draw upon Behavioural Economics and Psychology. This full day tutorial will provide a starting point for researchers seeking to learn more about information seeking, search and retrieval under uncertainty. The tutorial will be structured into three parts. First, we will provide an introduction of the biases and heuristics program put forward by Tversky and Kahneman [60] (1974) which assumes that people are not always rational. The second part of the tutorial will provide an overview of the types and space of biases in search,[5, 40] before doing a deep dive into several specific examples and the impact of biases on different types of decisions (e.g., health/medical, financial). The third part will focus on a discussion of the practical implication regarding the design and evaluation human-centered IR systems in the light of cognitive biases - where participants will undertake some hands-on exercises.more » « less
-
In this work, we present CogBeacon, a multi-modal dataset designed to target the effects of cognitive fatigue in human performance. The dataset consists of 76 sessions collected from 19 male and female users performing different versions of a cognitive task inspired by the principles of the Wisconsin Card Sorting Test (WCST), a popular cognitive test in experimental and clinical psychology designed to assess cognitive flexibility, reasoning, and specific aspects of cognitive functioning. During each session, we record and fully annotate user EEG functionality, facial keypoints, real-time self-reports on cognitive fatigue, as well as detailed information of the performance metrics achieved during the cognitive task (success rate, response time, number of errors, etc.). Along with the dataset we provide free access to the CogBeacon data-collection software to provide a standardized mechanism to the community for collecting and annotating physiological and behavioral data for cognitive fatigue analysis. Our goal is to provide other researchers with the tools to expand or modify the functionalities of the CogBeacon data-collection framework in a hardware-independent way. As a proof of concept we show some preliminary machine learning-based experiments on cognitive fatigue detection using the EEG information and the subjective user reports as ground truth. Our experiments highlight the meaningfulness of the current dataset, and encourage our efforts towards expanding the CogBeacon platform. To our knowledge, this is the first multi-modal dataset specifically designed to assess cognitive fatigue and the only free software available to allow experiment reproducibility for multi-modal cognitive fatigue analysis.more » « less
-
Modeling how people interact with search interfaces is core to the field of Interactive Information Retrieval. While various models have been proposed ranging from conceptual (e.g., Belkin’s ASK[12], Berry picking[11], Everyday-life information seeking, etc.) to theoretical (e.g., Information foraging theory[50], Economic theory[4], etc.), more recently there has been a body of working explore how people’s biases and the heuristics that they take influence how they search. This has led to the development of new models of the search process drawing upon Behavioural Economics and Psychology. This half day tutorial will provide a starting point for researchers seeking to learn more about information searching under uncertainty. The tutorial will be structured into two parts. First, we will provide an introduction of the biases and heuristics program put forward by Tversky and Kahneman [59] which assumes that people are not always rational. The second part of the tutorial will provide an overview of the types and space of biases in search [6, 42], before doing a deep dive into several specific examples and the impact of biases on different types of decisions (e.g., health/medical, financial etc.). The tutorial will wrap up with a discussion of some of the practical implication for how we can better design and evaluate IR systems in the light of cognitive biases.more » « less
-
Assessing the stability of biological system models has aided in uncovering a plethora of new insights in genetics, neuroscience, and medicine. In this paper, we focus on analyzing the stability of neurological signals, including electroencephalogram (EEG) signals. Interestingly, spatiotemporal discrete-time linear fractional-order systems (DTLFOS) have been shown to accurately and efficiently represent a variety of neurological and physiological signals. Here, we leverage the conditions for stability of DTLFOS to assess a real-world EEG data set. By analyzing the stability of EEG signals during movement and rest tasks, we provide evidence of the usefulness of the quantification of stability as a bio-marker for cognitive motor control.more » « less
An official website of the United States government
