Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present motivation and practical steps necessary to find parameter estimates of joint models of behavior and neural electrophysiological data. This tutorial is written for researchers wishing to build joint models of human behavior and scalp and intracranial electroencephalographic (EEG) or magnetoencephalographic (MEG) data, and more specifically those researchers who seek to understand human cognition. Although these techniques could easily be applied to animal models, the focus of this tutorial is on human participants. Joint modeling of M/EEG and behavior requires some knowledge of existing computational and cognitive theories, M/EEG artifact correction, M/EEG analysis techniques, cognitive modeling, and programming for statistical modeling implementation. This paper seeks to give an introduction to these techniques as they apply to estimating parameters from neurocognitive models of M/EEG and human behavior, and to evaluate model results and compare models. Due to our research and knowledge on the subject matter, our examples in this paper will focus on testing specific hypotheses in human decision-making theory. However, most of the motivation and discussion of this paper applies across many modeling procedures and applications. We provide Python (and linked R) code examples in the tutorial and appendix. Readers are encouraged to try the exercises at the end of the document.more » « less
-
I provide a personal perspective on metastudies and emphasize lesser-known benefits. I stress the need for integrative theories to establish commensurability between experiments. I argue that mathematical social scientists should be engaged to develop integrative theories, and that likelihood functions provide a common mathematical framework across experiments. The development of quantitative theories promotes commensurability engineering on a larger scale.more » « less
-
Prior expectations can bias how we perceive pain. Using a drift diffusion model, we recently showed that this influence is primarily based on changes in perceptual decision-making (indexed as shift in starting point). Only during unexpected application of high-intensity noxious stimuli, altered information processing (indexed as increase in drift rate) explained the expectancy effect on pain processing. Here, we employed functional magnetic resonance imaging to investigate the neural basis of both these processes in healthy volunteers. On each trial, visual cues induced the expectation of high- or low-intensity noxious stimulation or signaled equal probability for both intensities. Participants categorized a subsequently applied electrical stimulus as either low- or high-intensity pain. A shift in starting point towards high pain correlated negatively with right dorsolateral prefrontal cortex activity during cue presentation underscoring its proposed role of “keeping pain out of mind”. This anticipatory right dorsolateral prefrontal cortex signal increase was positively correlated with periaqueductal gray (PAG) activity when the expected high-intensity stimulation was applied. A drift rate increase during unexpected high-intensity pain was reflected in amygdala engagement and increased functional connectivity between amygdala and PAG. Our findings suggest involvement of the PAG in both decision-making bias and altered information processing to implement expectancy effects on pain.more » « less
An official website of the United States government
