A<sc>bstract</sc> We report the first measurement of the inclusivee+e−→$$ b\overline{b} $$ →$$ {D}_s^{\pm } $$ Xande+e−→$$ b\overline{b} $$ → D0/$$ {\overline{D}}^0 $$ Xcross sections in the energy range from 10.63 to 11.02 GeV. Based on these results, we determineσ(e+e−→$$ {B}_s^0{\overline{B}}_s^0 $$ X) andσ(e+e−→$$ B\overline{B} $$ X) in the same energy range. We measure the fraction of$$ {B}_s^0 $$ events at Υ(10860) to befs= ($$ {22.0}_{-2.1}^{+2.0} $$ )%. We determine also the ratio of the$$ {B}_s^0 $$ inclusive branching fractions$$ \mathcal{B} $$ ($$ {B}_s^0 $$ → D0/$$ {\overline{D}}^0 $$ X)/$$ \mathcal{B} $$ ($$ {B}_s^0 $$ →$$ {D}_s^{\pm } $$ X) = 0.416 ± 0.018 ± 0.092. The results are obtained using the data collected with the Belle detector at the KEKB asymmetric-energye+e−collider.
more »
« less
Fundamental bound on epidemic overshoot in the SIR model
We derive an exact upper bound on the epidemic overshoot for the Kermack–McKendrick SIR model. This maximal overshoot value of 0.2984 · · · occurs at . In considering the utility of the notion of overshoot, a rudimentary analysis of data from the first wave of the COVID-19 pandemic in Manaus, Brazil highlights the public health hazard posed by overshoot for epidemics withR0near 2. Using the general analysis framework presented within, we then consider more complex SIR models that incorporate vaccination.
more »
« less
- Award ID(s):
- 1917819
- PAR ID:
- 10492638
- Publisher / Repository:
- Journal of The Royal Society Interface
- Date Published:
- Journal Name:
- Journal of The Royal Society Interface
- Volume:
- 20
- Issue:
- 209
- ISSN:
- 1742-5662
- Page Range / eLocation ID:
- 20230322
- Subject(s) / Keyword(s):
- epidemiology SIR model overshoot
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> A measurement of theCP-violating parameters in$$ {B}_s^0\boldsymbol{\to}{D}_s^{\mp }{K}^{\pm} $$ decays is reported, based on the analysis of proton-proton collision data collected by the LHCb experiment corresponding to an integrated luminosity of 6 fb−1at a centre-of-mass energy of 13 TeV. The measured parameters are obtained with a decay-time dependent analysis yieldingCf= 0.791 ± 0.061 ± 0.022,$$ {A}_f^{\Delta \Gamma} $$ = −0.051 ± 0.134 ± 0.058,$$ {A}_{\overline{f}}^{\Delta \Gamma} $$ = −0.303 ± 0.125 ± 0.055,Sf= −0.571 ± 0.084 ± 0.023 and$$ {S}_{\overline{f}} $$ = −0.503 ± 0.084 ± 0.025, where the first uncertainty is statistical and the second systematic. This corresponds to CP violation in the interference between mixing and decay of about 8.6σ. Together with the value of the$$ {B}_s^0 $$ mixing phase −2βs, these parameters are used to obtain a measurement of the CKM angleγequal to (74 ± 12)° modulo 180°, where the uncertainty contains both statistical and systematic contributions. This result is combined with the previous LHCb measurement in this channel using 3 fb−1resulting in a determination of$$ \gamma ={\left({81}_{-11}^{+12}\right)}^{\circ } $$ .more » « less
-
Abstract We report the results from a study of two massive (M500c> 6.0 × 1014M⊙) strong-lensing clusters selected from the South Pole Telescope cluster survey for their large Einstein radius (RE> 40″), SPT-CL J2325−4111 and SPT-CL J0049−2440. Ground-based and shallow Hubble Space Telescope (HST) imaging indicated extensive strong-lensing evidence in these fields, with giant arcs spanning 18″ and 31″, respectively, motivating further space-based imaging follow-up. Here, we present multiband HST imaging and ground-based Magellan spectroscopy of the fields, from which we compile detailed strong-lensing models. The lens models of SPT-CL J2325−4111 and SPT-CL J0049−2440 were optimized using nine and eight secure multiply imaged systems with a final image-plane rms of 0 63 and 0 73, respectively. From the lensing analysis, we measure a projected mass density within 500 kpc ofM(<500 kpc) = (7.30 ± 0.07) × 1014M⊙and M⊙for these two clusters, and subhalo mass ratios of 0.12 ± 0.01 and , respectively. Both clusters produce a large area with high magnification (μ≥ 3) for a source atz= 9, arcmin2and arcmin2, respectively, placing them in the top tier of strong-lensing clusters. We conclude that these clusters are spectacular sightlines for further observations that will reduce the systematic uncertainties due to cosmic variance. This paper provides the community with two additional well-calibrated cosmic telescopes, as strong as the Frontier Fields and suitable for studies of the highly magnified background Universe.more » « less
-
A<sc>bstract</sc> Measurements of the production cross sections of prompt D0, D+, D*+,$$ {\textrm{D}}_{\textrm{s}}^{+} $$ ,$$ {\Lambda}_{\textrm{c}}^{+} $$ , and$$ {\Xi}_{\textrm{c}}^{+} $$ charm hadrons at midrapidity in proton-proton collisions at$$ \sqrt{s} $$ = 13 TeV with the ALICE detector are presented. The D-meson cross sections as a function of transverse momentum (pT) are provided with improved precision and granularity. The ratios ofpT-differential meson production cross sections based on this publication and on measurements at different rapidity and collision energy provide a constraint on gluon parton distribution functions at low values of Bjorken-x(10−5–10−4). The measurements of$$ {\Lambda}_{\textrm{c}}^{+} $$ ($$ {\Xi}_{\textrm{c}}^{+} $$ ) baryon production extend the measuredpTintervals down topT= 0(3) GeV/c. These measurements are used to determine the charm-quark fragmentation fractions and the$$ \textrm{c}\overline{\textrm{c}} $$ production cross section at midrapidity (|y|<0.5) based on the sum of the cross sections of the weakly-decaying ground-state charm hadrons D0, D+,$$ {\textrm{D}}_{\textrm{s}}^{+} $$ ,$$ {\Lambda}_{\textrm{c}}^{+} $$ ,$$ {\Xi}_{\textrm{c}}^0 $$ and, for the first time,$$ {\Xi}_{\textrm{c}}^{+} $$ , and of the strongly-decaying J/ψmesons. The first measurements of$$ {\Xi}_{\textrm{c}}^{+} $$ and$$ {\Sigma}_{\textrm{c}}^{0,++} $$ fragmentation fractions at midrapidity are also reported. A significantly larger fraction of charm quarks hadronising to baryons is found compared to e+e−and ep collisions. The$$ \textrm{c}\overline{\textrm{c}} $$ production cross section at midrapidity is found to be at the upper bound of state-of-the-art perturbative QCD calculations.more » « less
-
Abstract We present measurements of the branching fractions of eight$$ {\overline{B}}^0 $$ →D(*)+K−$$ {K}_{(S)}^{\left(\ast \right)0} $$ ,B−→D(*)0K−$$ {K}_{(S)}^{\left(\ast \right)0} $$ decay channels. The results are based on data from SuperKEKB electron-positron collisions at the Υ(4S) resonance collected with the Belle II detector, corresponding to an integrated luminosity of 362 fb−1. The event yields are extracted from fits to the distributions of the difference between expected and observedBmeson energy, and are efficiency-corrected as a function ofm(K−$$ {K}_{(S)}^{\left(\ast \right)0} $$ ) andm(D(*)$$ {K}_{(S)}^{\left(\ast \right)0} $$ ) in order to avoid dependence on the decay model. These results include the first observation of$$ {\overline{B}}^0 $$ →D+K−$$ {K}_S^0 $$ ,B−→D*0K−$$ {K}_S^0 $$ , and$$ {\overline{B}}^0 $$ →D*+K−$$ {K}_S^0 $$ decays and a significant improvement in the precision of the other channels compared to previous measurements. The helicity-angle distributions and the invariant mass distributions of theK−$$ {K}_{(S)}^{\left(\ast \right)0} $$ systems are compatible with quasi-two-body decays via a resonant transition with spin-parityJP= 1−for theK−$$ {K}_S^0 $$ systems andJP= 1+for theK−K*0systems. We also present measurements of the branching fractions of four$$ {\overline{B}}^0 $$ →D(*)+$$ {D}_s^{-} $$ ,B−→D(*)0$$ {D}_s^{-} $$ decay channels with a precision compatible to the current world averages.more » « less
An official website of the United States government

