skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Atlantic Meridional Overturning Circulation (AMOC) Heat Transport Time Series between April 2004 and December 2020 at 26.5°N
The RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) program has produced a continuous heat transport time series of the Atlantic Meridional Overturning Circulation (AMOC) at 26N that started in April 2004. This release of the heat transport time series covers the period from April 2004 to December 2020.The 26N AMOC time series is derived from measurements of temperature, salinity, pressure and water velocity from an array of moored instruments that extend from the east coast of the Bahamas to the continental shelf off Africa east of the Canary Islands. The AMOC heat transport calculation also uses estimates of the heat transport in the Florida Strait derived from sub-sea cable measurements calibrated by regular hydrographic cruises. The component of the AMOC associated with the wind driven Ekman layer is derived from ERA5 reanalysis. This release of the data includes a document with a brief description of the heat transport calculation of the AMOC time series and references to more detailed description in published papers. The 26N AMOC heat transport time series and the data from the moored array are curated by the Rosenstiel School of Marine, Atmospheric and Earth Science at the University of Miami. The RAPID-MOCHA-WBTS program is a joint effort between the NSF (Principal Investigators Bill Johns and Shane Elipot, Uni. Miami) in the USA, NERC in the UK (PI Ben Moat, David Smeed, and Brian King, NOC) and NOAA (PIs Denis Volkov and Ryan Smith).  more » « less
Award ID(s):
2148723
PAR ID:
10492700
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
University of Miami Libraries
Date Published:
Subject(s) / Keyword(s):
mesoscale ocean circulation FOS: Earth and related environmental sciences Physical Oceanography ocean circulation Atlantic meridional overturning circulation ocean transport heat transport
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) programme has produced a continuous time series of the Atlantic Meridional Overturning Circulation (AMOC) at 26N that started in April 2004. This release of the time series covers the period from April 2004 to February 2023. The 26N AMOC time series is derived from measurements of temperature, salinity, pressure and water velocity from an array of moored instruments that extend from the east coast of the Bahamas to the continental shelf off Africa east of the Canary Islands. The AMOC calculation also uses estimates of the transport in the Florida Strait derived from sub-sea cable measurements calibrated by regular hydrographic cruises. The component of the AMOC associated with the wind driven Ekman layer is derived from ERA5 reanalysis. This release of the data includes a document with a brief description of the calculation of the AMOC time series and references to more detailed description in published papers. The 26N AMOC time series and the data from the moored array are curated by the British Oceanographic Data Centre (BODC). The RAPID-MOCHA-WBTS programme is a joint effort between NERC in the UK (Principal Investigator Ben Moat since 2021, Eleanor Frajka-Williams since 2020 to 2021, David Smeed 2012 to 2020, and Stuart Cunningham from 2004 to 2012), NOAA (PIs Ryan Smith and Denis Volkov) and NSF (PIs Prof. Bill Johns and Prof. Shane Elipot, Uni. Miami) in the USA. 
    more » « less
  2. null (Ed.)
    Abstract. The Atlantic meridional overturning circulation (AMOC) has been observed continuously at 26° N since April 2004. The AMOC and its component parts are monitored by combining a transatlantic array of moored instruments with submarine-cable-based measurements of the Gulf Stream and satellite derived Ekman transport. The time series has recently been extended to October 2012 and the results show a downward trend since 2004. From April 2008 to March 2012, the AMOC was an average of 2.7 Sv (1 Sv = 106 m3 s−1) weaker than in the first four years of observation (95% confidence that the reduction is 0.3 Sv or more). Ekman transport reduced by about 0.2 Sv and the Gulf Stream by 0.5 Sv but most of the change (2.0 Sv) is due to the mid-ocean geostrophic flow. The change of the mid-ocean geostrophic flow represents a strengthening of the southward flow above the thermocline. The increased southward flow of warm waters is balanced by a decrease in the southward flow of lower North Atlantic deep water below 3000 m. The transport of lower North Atlantic deep water slowed by 7% per year (95% confidence that the rate of slowing is greater than 2.5% per year). 
    more » « less
  3. Continuous measurements of the Atlantic meridional overturning circulation (AMOC) and meridional ocean heat transport at 26.5° N began in April 2004 and are currently available through December 2020. Approximately 90% of the total meridional heat transport (MHT) at 26.5° N is carried by the zonally averaged overturning circulation, and an even larger fraction of the heat transport variability (approx. 95%) is explained by the variability of the zonally averaged overturning. A physically based separation of the heat transport into large-scale AMOC, gyre and shallow wind-driven overturning components remains challenging and requires new investigations and approaches. We review the major interannual changes in the AMOC and MHT that have occurred over the nearly two decades of available observations and their documented impacts on North Atlantic heat content. Changes in the flow-weighted temperature of the Florida Current (Gulf Stream) over the past two decades are now taken into account in the estimates of MHT, and have led to an increased heat transport relative to the AMOC strength in recent years. Estimates of the MHT at 26.5° N from coupled models and various surface flux datasets still tend to show low biases relative to the observations, but indirect estimates based on residual methods (top of atmosphere net radiative flux minus atmospheric energy divergence) have shown recent promise in reproducing the heat transport and its interannual variability.This article is part of a discussion meeting issue ‘Atlantic overturning: new observations and challenges’. 
    more » « less
  4. Abstract Observation‐based estimates of the Atlantic Meridional Overturning Circulation (AMOC) and meridional heat transport (MHT) are necessary to better understand their evolution in the coming years. The RAPID‐MOCHA‐WBTS array at 26°N is the only trans‐Atlantic observing system to provide 20+ years of continuous measurements of the AMOC and MHT. While the design of the array has continuously evolved as our understanding of the AMOC has advanced, and as new technologies have become available, a new goal is to design a lower‐cost and more sustainable observing system to continue AMOC estimations with high accuracy. Using the RAPID array data and ocean reanalyzes, we evaluate the error in the AMOC estimate due to the choice of data included in its calculation. We find that the trend and variability of the volume transport in the upper 3,000‐m of the water column are not captured with sufficient accuracy by synoptic hydrographic data or ocean reanalyzes. However, moorings in the deep ocean interior along the eastern boundary and the Mid‐Atlantic ridge can be replaced by hydrographic data from repeat trans‐Atlantic hydrographic sections to reliably estimate the AMOC trend and variability. Experiments simulating the observing system in a high‐resolution ocean model further show that the additional error in the long‐term AMOC estimate induced by the substitution of mooring measurements below 3,000‐m depth at these locations is small (0.30 Sv) as compared to the AMOC uncertainty. 
    more » « less
  5. Continuous measurements from the OSNAP (Overturning in the Subpolar North Atlantic Program) array yield the first estimates of trans-basin heat and salinity transports in the subpolar latitudes. For the period from August 2014 to May 2018, there is a poleward heat transport of 0.50 ± 0.05 PW and a poleward salinity transport of 12.5 ± 1.0 Sv across the OSNAP section. Based on the mass and salt budget analyses, we estimate that a surface freshwater input of 0.36 ± 0.05 Sv over the broad subpolar-Arctic region is needed to balance the ocean salinity change created by the OSNAP transports. The overturning circulation is largely responsible for setting these heat and salinity transports (and the derived surface freshwater input) derived from the OSNAP array, while the gyre (isopycnal) circulation contributes to a lesser, but still significant, extent. Despite its relatively weak overturning and heat transport, the Labrador Sea is a strong contributor to salinity and freshwater changes in the subpolar region. Combined with trans-basin transport estimates at other locations, we provide new estimates for the time-mean surface heat and freshwater divergences over a wide domain of the Arctic-North Atlantic region to the north and south of the OSNAP line. Furthermore, we estimate the total heat and freshwater exchanges across the surface area of the extratropical North Atlantic between the OSNAP and the RAPID-MOCHA (RAPID Meridional Overturning Circulation and Heat-flux Array) arrays, by combining the cross-sectional transports with vertically-integrated ocean heat and salinity content. Comparisons with the air-sea heat and freshwater fluxes from atmospheric reanalysis products show an overall consistency, yet with notable differences in the magnitudes during the observation time period. 
    more » « less