skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Pending recovery in the strength of the meridional overturning circulation at 26° N
Abstract. The strength of the Atlantic meridional overturning circulation(AMOC) at 26∘ N has now been continuously measured by the RAPIDarray over the period April 2004–September 2018. This record provides uniqueinsight into the variability of the large-scale ocean circulation,previously only measured by sporadic snapshots of basin-wide transport fromhydrographic sections. The continuous measurements have unveiled strikingvariability on timescales of days to a decade, driven largely bywind forcing, contrasting with previous expectations about a slowly varyingbuoyancy-forced large-scale ocean circulation. However, these measurementswere primarily observed during a warm state of the Atlantic multidecadalvariability (AMV) which has been steadily declining since a peak in2008–2010. In 2013–2015, a period of strong buoyancy forcing by theatmosphere drove intense water-mass transformation in the subpolar NorthAtlantic and provides a unique opportunity to investigate the response ofthe large-scale ocean circulation to buoyancy forcing. Modelling studiessuggest that the AMOC in the subtropics responds to such events with anincrease in overturning transport, after a lag of 3–9 years. At45∘ N, observations suggest that the AMOC may already beincreasing. Examining 26∘ N, we find that the AMOC is no longerweakening, though the recent transport is not above the long-term mean.Extending the record backwards in time at 26∘ N with oceanreanalysis from GloSea5, the transport fluctuations at 26∘ N areconsistent with a 0- to 2-year lag from those at 45∘ N, albeit withlower magnitude. Given the short span of time and anticipated delays in thesignal from the subpolar to subtropical gyres, it is not yet possible todetermine whether the subtropical AMOC strength is recovering nor how theAMOC at 26∘ N responds to intense buoyancy forcing.  more » « less
Award ID(s):
1332978 1926008
NSF-PAR ID:
10208812
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Ocean Science
Volume:
16
Issue:
4
ISSN:
1812-0792
Page Range / eLocation ID:
863 to 874
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The latitudinal structure of the Atlantic meridional overturning circulation (AMOC) variability in the North Atlantic is investigated using numerical results from three ocean circulation simulations over the past four to five decades. We show that AMOC variability south of the Labrador Sea (53°N) to 25°N can be decomposed into a latitudinally coherent component and a gyre-opposing component. The latitudinally coherent component contains both decadal and interannual variabilities. The coherent decadal AMOC variability originates in the subpolar region and is reflected by the zonal density gradient in that basin. It is further shown to be linked to persistent North Atlantic Oscillation (NAO) conditions in all three models. The interannual AMOC variability contained in the latitudinally coherent component is shown to be driven by westerlies in the transition region between the subpolar and the subtropical gyre (40°–50°N), through significant responses in Ekman transport. Finally, the gyre-opposing component principally varies on interannual time scales and responds to local wind variability related to the annual NAO. The contribution of these components to the total AMOC variability is latitude-dependent: 1) in the subpolar region, all models show that the latitudinally coherent component dominates AMOC variability on interannual to decadal time scales, with little contribution from the gyre-opposing component, and 2) in the subtropical region, the gyre-opposing component explains a majority of the interannual AMOC variability in two models, while in the other model, the contributions from the coherent and the gyre-opposing components are comparable. These results provide a quantitative decomposition of AMOC variability across latitudes and shed light on the linkage between different AMOC variability components and atmospheric forcing mechanisms. 
    more » « less
  2. null (Ed.)
    The Mediterranean Sea can be viewed as a “barometer” of the North Atlantic Ocean, because its sea level responds to oceanic-gyre-scale changes in atmospheric pressure and wind forcing, related to the North Atlantic Oscillation (NAO). The climate of the North Atlantic is influenced by the Atlantic meridional overturning circulation (AMOC) as it transports heat from the South Atlantic toward the subpolar North Atlantic. This study reports on a teleconnection between the AMOC transport measured at 26.5°N and the Mediterranean Sea level during 2004–17: a reduced/increased AMOC transport is associated with a higher/lower sea level in the Mediterranean. Processes responsible for this teleconnection are analyzed in detail using available satellite and in situ observations and an atmospheric reanalysis. First, it is shown that on monthly to interannual time scales the AMOC and sea level are both driven by similar NAO-like atmospheric circulation patterns. During a positive/negative NAO state, stronger/weaker trade winds (i) drive northward/southward anomalies of Ekman transport across 26.5°N that directly affect the AMOC and (ii) are associated with westward/eastward winds over the Strait of Gibraltar that force water to flow out of/into the Mediterranean Sea and thus change its average sea level. Second, it is demonstrated that interannual changes in the AMOC transport can lead to thermosteric sea level anomalies near the North Atlantic eastern boundary. These anomalies can (i) reach the Strait of Gibraltar and cause sea level changes in the Mediterranean Sea and (ii) represent a mechanism for negative feedback on the AMOC. 
    more » « less
  3. The Atlantic meridional overturning circulation (AMOC) is pivotal for regional and global climate due to its key role in the uptake and redistribution of heat and carbon. Establishing the causes of historical variability in AMOC strength on different timescales can tell us how the circulation may respond to natural and anthropogenic changes at the ocean surface. However, understanding observed AMOC variability is challenging because the circulation is influenced by multiple factors that co-vary and whose overlapping impacts persist for years. Here we reconstruct and unambiguously attribute intermonthly and interannual AMOC variability at two observational arrays to the recent history of surface wind stress, temperature and salinity. We use a state-of-the-art technique that computes space- and time-varying sensitivity patterns of the AMOC strength with respect to multiple surface properties from a numerical ocean circulation model constrained by observations. While, on interannual timescales, AMOC variability at 26° N is overwhelmingly dominated by a linear response to local wind stress, overturning variability at subpolar latitudes is generated by the combined effects of wind stress and surface buoyancy anomalies. Our analysis provides a quantitative attribution of subpolar AMOC variability to temperature, salinity and wind anomalies at the ocean surface. 
    more » « less
  4. Variations in the Atlantic meridional overturning circulation (AMOC) driven by buoyancy forcing are typically characterized as having a low-frequency time scale, interhemispheric structure, cross-equatorial heat transport, and linkages to the strength of Northern Hemisphere gyre circulations and the Gulf Stream. This study first tests whether these attributes ascribed to the AMOC are reproduced in a coupled model that is mechanically decoupled and, hence, is only buoyancy coupled. Overall, the mechanically decoupled model reproduces these attributes, with the exception that in the subpolar gyre, buoyancy drives AMOC variations on interannual to multidecadal time scales, yet only the multidecadal variations penetrate into the subtropics. A stronger AMOC is associated with a strengthening of the Northern Hemisphere gyre circulations, Gulf Stream, and northward oceanic heat transport throughout the basin. We then determine whether the characteristics in the mechanically decoupled model can be recovered by low-pass filtering the AMOC in a fully coupled version of the same model, a common approach used to isolate the buoyancy-driven AMOC. A major conclusion is that low-pass filtering the AMOC in the fully coupled model reproduces the buoyancy-driven AMOC pattern and most of the associated attributes, but not the statistics of the temporal variability. The strength of the AMOC–Gulf Stream connection is also not reproduced. The analyses reveal caveats that must be considered when choosing indexes and filtering techniques to estimate the buoyancy-driven AMOC. Results also provide insight on the latitudinal dependence of time scales and drivers of ocean circulation variability in coupled models, with potential implications for measurement and detection of the buoyancy-driven AMOC in the real world.

     
    more » « less
  5. Abstract

    The Atlantic Meridional Overturning Circulation (AMOC) variability is suggested to be incoherent between the subpolar and subtropical gyres in the Atlantic on interannual and even decadal time scales, questioning the representativeness of AMOC variability at a single latitude in modern observation and paleoreconstruction. Paleoreconstructions of the Florida Current transport suggest that Florida Current variability is associated with the AMOC on the millennial time scale, but the Rapid Climate Change (RAPID) mooring array suggests a weak correlation between the Florida Current and the AMOC. In this study, we investigate the meridional coherence of AMOC variability and the relationship between the Florida Current variability and the AMOC variability on different time scales in a transient 20,000‐year simulation. We find that with the increase of time scales, the meridional coherence of the AMOC increases. On decadal and longer time scales, the coherent subtropical and subpolar AMOC is caused by the coherent buoyancy forcing in the subpolar gyre. Also, the Florida Current transport is highly correlated with AMOC variability on decadal and longer time scales, suggesting that observations of the Florida Current can be used to indicate AMOC variability on long time scales.

     
    more » « less