skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards two decades of Atlantic Ocean mass and heat transports at 26.5° N
Continuous measurements of the Atlantic meridional overturning circulation (AMOC) and meridional ocean heat transport at 26.5° N began in April 2004 and are currently available through December 2020. Approximately 90% of the total meridional heat transport (MHT) at 26.5° N is carried by the zonally averaged overturning circulation, and an even larger fraction of the heat transport variability (approx. 95%) is explained by the variability of the zonally averaged overturning. A physically based separation of the heat transport into large-scale AMOC, gyre and shallow wind-driven overturning components remains challenging and requires new investigations and approaches. We review the major interannual changes in the AMOC and MHT that have occurred over the nearly two decades of available observations and their documented impacts on North Atlantic heat content. Changes in the flow-weighted temperature of the Florida Current (Gulf Stream) over the past two decades are now taken into account in the estimates of MHT, and have led to an increased heat transport relative to the AMOC strength in recent years. Estimates of the MHT at 26.5° N from coupled models and various surface flux datasets still tend to show low biases relative to the observations, but indirect estimates based on residual methods (top of atmosphere net radiative flux minus atmospheric energy divergence) have shown recent promise in reproducing the heat transport and its interannual variability.This article is part of a discussion meeting issue ‘Atlantic overturning: new observations and challenges’.  more » « less
Award ID(s):
1926008 2148723
PAR ID:
10470783
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Royal Society of London
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
381
Issue:
2262
ISSN:
1364-503X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The Mediterranean Sea can be viewed as a “barometer” of the North Atlantic Ocean, because its sea level responds to oceanic-gyre-scale changes in atmospheric pressure and wind forcing, related to the North Atlantic Oscillation (NAO). The climate of the North Atlantic is influenced by the Atlantic meridional overturning circulation (AMOC) as it transports heat from the South Atlantic toward the subpolar North Atlantic. This study reports on a teleconnection between the AMOC transport measured at 26.5°N and the Mediterranean Sea level during 2004–17: a reduced/increased AMOC transport is associated with a higher/lower sea level in the Mediterranean. Processes responsible for this teleconnection are analyzed in detail using available satellite and in situ observations and an atmospheric reanalysis. First, it is shown that on monthly to interannual time scales the AMOC and sea level are both driven by similar NAO-like atmospheric circulation patterns. During a positive/negative NAO state, stronger/weaker trade winds (i) drive northward/southward anomalies of Ekman transport across 26.5°N that directly affect the AMOC and (ii) are associated with westward/eastward winds over the Strait of Gibraltar that force water to flow out of/into the Mediterranean Sea and thus change its average sea level. Second, it is demonstrated that interannual changes in the AMOC transport can lead to thermosteric sea level anomalies near the North Atlantic eastern boundary. These anomalies can (i) reach the Strait of Gibraltar and cause sea level changes in the Mediterranean Sea and (ii) represent a mechanism for negative feedback on the AMOC. 
    more » « less
  2. Abstract The Atlantic Meridional Overturning Circulation (AMOC) plays a critical role in the global climate system through the redistribution of heat, freshwater and carbon. At 26.5°N, the meridional heat transport has traditionally been partitioned geometrically into vertical and horizontal circulation cells; however, attributing these components to the AMOC and Subtropical Gyre (STG) flow structures remains widely debated. Using water parcel trajectories evaluated within an eddy‐rich ocean hindcast, we present the first Lagrangian decomposition of the meridional heat transport at 26.5°N. We find that water parcels recirculating within the STG account for 37% (0.36 PW) of the total heat transport across 26.5°N, more than twice that of the classical horizontal gyre component (15%). Our findings indicate that STG heat transport cannot be meaningfully distinguished from that of the basin‐scale overturning since water parcels cooled within the gyre subsequently feed the northward, subsurface limb of the AMOC. 
    more » « less
  3. Abstract The Atlantic Meridional Overturning Circulation (AMOC) is expected to weaken in the 21st century due to increased surface buoyancy. Such AMOC changes in ocean models are often accompanied by a subsurface reduction in density. Here we perform freshwater perturbation experiments with both a 1° coupled model and an idealized zonally averaged ocean‐only model to demonstrate that slow subsurface property changes (1) introduce a negative feedback that erodes the stratification and partially reinvigorates convection and the AMOC and (2) ensure the meridional heat transport weakens less than the AMOC. In the coupled model with a 0.1‐Sv net freshwater flux introduced around Greenland, an initial 22% AMOC reduction over 40 years is followed by a recovery of almost half the lost strength after 400 years. The final heat transport, however, is weakened by only 7%. Similar responses in the idealized model demonstrate that 2‐D ocean‐only dynamics control the changes. 
    more » « less
  4. Abstract Here we investigate the role of the atmospheric circulation in the Atlantic Meridional Overturning Circulation (AMOC) by comparing a fully‐coupled large ensemble, a forced‐ocean simulation, and new experiments using a fully‐coupled global climate model where winds above the boundary layer are nudged toward reanalysis. When winds are nudged north of 45°N, agreement with RAPID array observations of AMOC at 26.5°N improves across several metrics. The phasing of interannual variability is well‐captured due to the response of the local Ekman component in both wind‐nudging and forced‐ocean simulations, however the variance remains underestimated. The mean AMOC strength is substantially reduced relative to the fully‐coupled model large ensemble, which is biased high, due to the impact of winds on surface buoyancy fluxes over the subpolar gyre. Nudging winds toward observations also reduces the 1979–2016 trend in AMOC, suggesting that improvement in the representation of the high‐latitude atmosphere is important for projecting long‐term AMOC changes. 
    more » « less
  5. The Atlantic meridional overturning circulation (AMOC) is pivotal for regional and global climate due to its key role in the uptake and redistribution of heat and carbon. Establishing the causes of historical variability in AMOC strength on different timescales can tell us how the circulation may respond to natural and anthropogenic changes at the ocean surface. However, understanding observed AMOC variability is challenging because the circulation is influenced by multiple factors that co-vary and whose overlapping impacts persist for years. Here we reconstruct and unambiguously attribute intermonthly and interannual AMOC variability at two observational arrays to the recent history of surface wind stress, temperature and salinity. We use a state-of-the-art technique that computes space- and time-varying sensitivity patterns of the AMOC strength with respect to multiple surface properties from a numerical ocean circulation model constrained by observations. While, on interannual timescales, AMOC variability at 26° N is overwhelmingly dominated by a linear response to local wind stress, overturning variability at subpolar latitudes is generated by the combined effects of wind stress and surface buoyancy anomalies. Our analysis provides a quantitative attribution of subpolar AMOC variability to temperature, salinity and wind anomalies at the ocean surface. 
    more » « less