skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Planetesimals at DZ stars – I. Chondritic compositions and a massive accretion event
ABSTRACT There is a wealth of evidence to suggest that planetary systems can survive beyond the main sequence. Most commonly, white dwarfs are found to be accreting material from tidally disrupted asteroids, whose bulk compositions are reflected by the metals polluting the stellar photospheres. While many examples are known, most lack the deep, high-resolution data required to detect multiple elements, and thus characterize the planetesimals that orbit them. Here, spectra of seven DZ white dwarfs observed with Keck High Resolution Echelle Spectrometer (HIRES) are analysed, where up to nine metals are measured per star. Their compositions are compared against those of Solar system objects, working in a Bayesian framework to infer or marginalize over the accretion history. All of the stars have been accreting primitive material, similar to chondrites, with hints of a Mercury-like composition at one star. The most polluted star is observed several Myr after its last major accretion episode, in which a Moon-sized object met its demise.  more » « less
Award ID(s):
1826583
PAR ID:
10492725
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
SAO/NASA Astrophysics Data System
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
526
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
3815 to 3831
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT A large fraction of white dwarfs (WDs) have metal-polluted atmospheres, which are produced by accreting material from remnant planetary systems. The composition of the accreted debris broadly resembles that of rocky Solar system objects. Volatile-enriched debris with compositions similar to long-period comets (LPCs) is rarely observed. We attempt to reconcile this dearth of volatiles with the premise that exo-Oort clouds (XOCs) occur around a large fraction of planet-hosting stars. We estimate the comet accretion rate from an XOC analytically, adapting the ‘loss cone’ theory of LPC delivery in the Solar system. We investigate the dynamical evolution of an XOC during late stellar evolution. Using numerical simulations, we show that 1–30 per cent of XOC objects remain bound after anisotropic stellar mass-loss imparting a WD natal kick of $${\sim}1 \, {\rm km \, s^{-1}}$$. We also characterize the surviving comets’ distribution function. Surviving planets orbiting a WD can prevent the accretion of XOC comets by the star. A planet’s ‘dynamical barrier’ is effective at preventing comet accretion if the energy kick imparted by the planet exceeds the comet’s orbital binding energy. By modifying the loss cone theory, we calculate the amount by which a planet reduces the WD’s accretion rate. We suggest that the scarcity of volatile-enriched debris in polluted WDs is caused by an unseen population of 10–$$100 \, \mathrm{au}$$ scale giant planets acting as barriers to incoming LPCs. Finally, we constrain the amount of volatiles delivered to a planet in the habitable zone of an old, cool WD. 
    more » « less
  2. ABSTRACT Observations of planetary material polluting the atmospheres of white dwarfs are an important probe of the bulk composition of exoplanetary material. Medium- and high-resolution optical and ultraviolet spectroscopy of seven white dwarfs with known circumstellar dust and gas emission are presented. Detections or meaningful upper limits for photospheric absorption lines are measured for: C, O, Na, S, P, Mg, Al, Si, Ca, Ti, Cr, Fe, and Ni. For 16 white dwarfs with known observable gaseous emission discs (and measured photospheric abundances), there is no evidence that their accretion rates differ, on average, from those without detectable gaseous emission. This suggests that, typically, accretion is not enhanced by gas drag. At the effective temperature range of the white dwarfs in this sample (16 000–25 000 K) the abundance ratios of elements are more consistent than absolute abundances when comparing abundances derived from spectroscopic white dwarf parameters versus photometric white dwarf parameters. Crucially, this highlights that the uncertainties on white dwarf parameters do not prevent white dwarfs from being utilized to study planetary composition. The abundances of oxygen and silicon for the three hydrogen-dominated white dwarfs in the sample with both optical and ultraviolet spectra differ by 0.62 dex depending on if they are derived from the optical or ultraviolet spectra. This optical/ultraviolet discrepancy may be related to differences in the atmospheric depth of line formation; further investigations into the white dwarf atmospheric modelling are needed to understand this discrepancy. 
    more » « less
  3. ABSTRACT Steadily accreting white dwarfs (WDs) are efficient sources of ionization and thus are able to create extended ionized nebulae in their vicinity. These nebulae represent ideal tools for the detection of accreting WDs, given that in most cases the source itself is faint. In this work, we combine radiation transfer simulations with known H- and He-accreting WD models, providing for the first time the ionization state and the emission-line spectra of the formed nebulae as a function of the WD mass, the accretion rate and the chemical composition of the accreted material. We find that the nebular optical line fluxes and radial extent vary strongly with the WD’s accretion properties, peaking in systems with WD masses of 0.8–1.2 $$\rm M_{\odot }$$. Projecting our results on so-called BPT diagnostic diagrams, we show that accreting WD nebulae possess characteristics distinct from those of H ii-like regions, while they have line ratios similar to those in galactic low-ionization emission-line regions. Finally, we compare our results with the relevant constraints imposed by the lack of ionized nebulae in the vicinity of supersoft X-ray sources (SSSs) and Type Ia supernova remnants – sources that are related to steadily accreting WDs. The large discrepancies uncovered by our comparison rule out any steadily accreting WD as a potential progenitor of the studied remnants and additionally require the ambient medium around the SSSs to be less dense than 0.2 $$\rm cm^{-3}$$. We discuss possible alternatives that could bridge the incompatibility between the theoretical expectations and relevant observations. 
    more » « less
  4. Abstract Polluted white dwarfs (WDs) offer a unique way to study the bulk compositions of exoplanetary material, but it is not always clear if this material originates from comets, asteroids, moons, or planets. We combineN-body simulations with an analytical model to assess the prevalence of extrasolar moons as WD polluters. Using a sample of observed polluted WDs, we find that the extrapolated parent body masses of the polluters are often more consistent with those of many solar system moons, rather than solar-like asteroids. We provide a framework for estimating the fraction of WDs currently undergoing observable moon accretion based on results from simulated WD planetary and moon systems. Focusing on a three-planet WD system of super-Earth to Neptune-mass bodies, we find that we could expect about one percent of such systems to be currently undergoing moon accretions as opposed to asteroid accretion. 
    more » « less
  5. Abstract The canonical picture of star formation involves disk-mediated accretion, with Keplerian accretion disks and associated bipolar jets primarily observed in nearby, low-mass young stellar objects (YSOs). Recently, rotating gaseous structures and Keplerian disks have been detected around several massive (M > 8 M) YSOs (MYSOs)1–4, including several disk-jet systems5–7. All the known MYSO systems are in the Milky Way, and all are embedded in their natal material. Here we report the detection of a rotating gaseous structure around an extragalactic MYSO in the Large Magellanic Cloud. The gas motion indicates that there is a radial flow of material falling from larger scales onto a central disk-like structure. The latter exhibits signs of Keplerian rotation, so that there is a rotating toroid feeding an accretion disk and thus the growth of the central star. The system is in almost all aspects comparable to Milky Way high-mass YSOs accreting gas from a Keplerian disk. The key difference between this source and its Galactic counterparts is that it is optically revealed rather than being deeply embedded in its natal material as is expected of such a massive young star. We suggest that this is the consequence of the star having formed in a low-metallicity and low-dust content environment. Thus, these results provide important constraints for models of the formation and evolution of massive stars and their circumstellar disks. 
    more » « less