Sacrificial anodes composed of inexpensive metals such as Zn, Fe and Mg are widely used to support electrochemical nickel-catalyzed cross-electrophile coupling (XEC) reactions, in addition to other reductive electrochemical transformations. Such anodes are appealing because they provide a stable counter-electrode potential and typically avoid interference with the reductive chemistry. The present study outlines development of an electrochemical Ni-catalyzed XEC reaction that streamlines access to a key pharmaceutical intermediate. Metal ions derived from sacrificial anode oxidation, however, directly contribute to homocoupling and proto-dehalogenation side products that are commonly formed in chemical and electrochemical Ni-catalyzed XEC reactions. Use of a divided cell limits interference by the anode-derived metal ions and supports high product yield with negligible side product formation, introducing a strategy to overcome one of the main limitations of Ni-catalyzed XEC. 
                        more » 
                        « less   
                    
                            
                            Recent Advances in Electrochemical, Ni‐Catalyzed C−C Bond Formation
                        
                    
    
            Abstract Nickel‐catalyzed cross‐electrophile coupling (XEC) is an efficient method to form carbon‐carbon bonds and has become an important tool for building complex molecules. While XEC has most often used stoichiometric metal reductants, these transformations can also be driven electrochemically. Electrochemical XEC (eXEC) is attractive because it can increase the greenness of XEC and this potential has resulted in numerous advances in recent years. The focus of this review is on electrochemical, Ni‐catalyzed carbon‐carbon bond forming reactions reported since 2010 and is categorized by the type of anodic half reaction: sacrificial anode, sacrificial reductant, and convergent paired electrolysis. The key developments are highlighted and the need for more scalable options is discussed. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2154698
- PAR ID:
- 10492737
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Israel Journal of Chemistry
- Volume:
- 64
- Issue:
- 1-2
- ISSN:
- 0021-2148
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Zinc and manganese are widely used as reductants in synthetic methods, such as nickel-catalyzed cross-electrophile coupling (XEC) reactions, but their redox potentials are unknown in organic solvents. Here, we show how open-circuit potential measurements may be used to determine the thermodynamic potentials of Zn and Mn in different organic solvents and in the presence of common reaction additives. The impact of these Zn and Mn potentials is analyzed for a pair of Ni-catalyzed reactions, each showing a preference for one of the two reductants. Ni-catalyzed coupling of N-alkyl-2,4,6-triphenylpyridinium reagents (Katritzky salts) with aryl halides are then compared under chemical reaction conditions, using Zn or Mn reductants, and under electrochemical conditions performed at applied potentials corresponding to the Zn and Mn reduction potentials and at potentials optimized to achieve the maximum yield. The collective results illuminate the important role of reductant redox potential in Ni-catalyzed XEC reactions.more » « less
- 
            Abstract A transition metal‐free Se‐catalyzed C−H amination protocol for α’‐amination of enol derivatives has been developed. This reaction can be used to functionalize a wide variety of oxygen‐ and halogen‐substituted alkenes spanning a vast range of nucleophilicities, giving α’‐aminated enol derivatives with high regioselectivity. Amination ofE/Zmixtures of alkenes proceeds stereoconvergently to give the (Z)‐enol derivatives exclusively. Mechanistic studies revealed that the relative reactivity and α’‐regioselectivity of these transformations is determined by substantial resonance donation to the heteroatom‐bound carbon in the transition state. These products participate in traditional reactions of enol derivatives, allowing for efficient functionalization of both α‐ and α’‐positions from a single enol derivative with high diastereocontrol.more » « less
- 
            Nickel-catalyzed cross-electrophile coupling (XEC) reactions of (hetero)aryl electrophiles represent appealing alternatives to palladium-catalyzed methods for biaryl synthesis, but they often generate significant quantities of homocoupling and/or proto-dehalogenation side products. In this study, an informer library of heteroaryl chloride and aryl bromide coupling partners is used to identify Ni-catalyzed XEC conditions that access high selectivity for the cross-product when using equimolar quantities of the two substrates. Two different catalyst systems are identified that show complementary scope and broad functional-group tolerance, and time-course data suggest the two methods follow different mechanisms. A NiBr2/terpyridine catalyst system with Zn as the reductant converts the aryl bromide into an aryl-zinc intermediate that undergoes in situ coupling with 2-chloropyridines, while a NiBr2/bipyridine catalyst system with tetrakis(dimethylamino)ethylene as the reductant uses FeBr2 and NaI as additives to achieve selective cross-coupling.more » « less
- 
            Ni-catalyzed cross-electrophile coupling (XEC) reactions have gained prominence for the construction of C–C bonds. Prior studies of XEC routes to biaryls have invoked several different mechanisms for the formation of key Ni(Ar)2 intermediates. Here, we provide evidence for a previously unrecognized pathway involving reductively induced transmetalation between NiI(Ar) and NiII(Ar)X species. Chemical and electrochemical reduction of (tBubpy)NiII(2-tolyl)Br (tBubpy = 4,4’-di-tert-butyl-2,2’-bipyridine) to (tBubpy)NiI(2-tolyl) is shown to initiate rapid transmetalation of the 2-tolyl ligand to a second equivalent of (tBubpy)NiII(2-tolyl)Br, affording (tBubpy)NiII(2-tolyl)2 and (tBubpy)NiIBr as well defined products. Experimental and computational data show that the NiI-to-NiII transmetalation mechanism is much more favorable than NiII-to-NiII transmetalation. Oxidation of (tBubpy)NiII(2-tolyl)Br results in rapid reductive elimination of 2-tolyl–Br, rather than promoting the analogous oxidatively induced NiII/NiIII transmetalation. The NiII(2-tolyl)2 product of NiI-to-NiII transmetalation is stable at room temperature, while sterically less encumbered NiII(Ar)2 species undergo rapid reductive elimination to afford biaryl and a Ni0 byproduct. The latter species can serve as a source of electrons to promote further transmetalation and biaryl formation. The unhindered complex (tBubpy)NiII(4-CF3-phenyl)Br undergoes biaryl formation in the absence of added reductant; however, kinetic analysis reveals an induction period and autocatalytic time course. Addition of catalytic quantities of a cobaltocene-based reductant eliminates the induction period and accelerates biaryl formation, consistent with the NiI-to-NiII transmetalation pathway. The results of this study provide a new rationale for previously reported results in the literature and introduce an alternative pathway to consider in the development of Ni-catalyzed biaryl coupling reactions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
