skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 10, 2026

Title: Reductively Induced Aryl Transmetalation: An Alternative Catalytically Relevant Ni-Catalyzed Biaryl Coupling Mechanism
Ni-catalyzed cross-electrophile coupling (XEC) reactions have gained prominence for the construction of C–C bonds. Prior studies of XEC routes to biaryls have invoked several different mechanisms for the formation of key Ni(Ar)2 intermediates. Here, we provide evidence for a previously unrecognized pathway involving reductively induced transmetalation between NiI(Ar) and NiII(Ar)X species. Chemical and electrochemical reduction of (tBubpy)NiII(2-tolyl)Br (tBubpy = 4,4’-di-tert-butyl-2,2’-bipyridine) to (tBubpy)NiI(2-tolyl) is shown to initiate rapid transmetalation of the 2-tolyl ligand to a second equivalent of (tBubpy)NiII(2-tolyl)Br, affording (tBubpy)NiII(2-tolyl)2 and (tBubpy)NiIBr as well defined products. Experimental and computational data show that the NiI-to-NiII transmetalation mechanism is much more favorable than NiII-to-NiII transmetalation. Oxidation of (tBubpy)NiII(2-tolyl)Br results in rapid reductive elimination of 2-tolyl–Br, rather than promoting the analogous oxidatively induced NiII/NiIII transmetalation. The NiII(2-tolyl)2 product of NiI-to-NiII transmetalation is stable at room temperature, while sterically less encumbered NiII(Ar)2 species undergo rapid reductive elimination to afford biaryl and a Ni0 byproduct. The latter species can serve as a source of electrons to promote further transmetalation and biaryl formation. The unhindered complex (tBubpy)NiII(4-CF3-phenyl)Br undergoes biaryl formation in the absence of added reductant; however, kinetic analysis reveals an induction period and autocatalytic time course. Addition of catalytic quantities of a cobaltocene-based reductant eliminates the induction period and accelerates biaryl formation, consistent with the NiI-to-NiII transmetalation pathway. The results of this study provide a new rationale for previously reported results in the literature and introduce an alternative pathway to consider in the development of Ni-catalyzed biaryl coupling reactions.  more » « less
Award ID(s):
2154698 2154699 2154700
PAR ID:
10600336
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Journal of the American Chemical Society
ISSN:
0002-7863
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nickel-catalyzed cross-electrophile coupling (XEC) reactions of (hetero)aryl electrophiles represent appealing alternatives to palladium-catalyzed methods for biaryl synthesis, but they often generate significant quantities of homocoupling and/or proto-dehalogenation side products. In this study, an informer library of heteroaryl chloride and aryl bromide coupling partners is used to identify Ni-catalyzed XEC conditions that access high selectivity for the cross-product when using equimolar quantities of the two substrates. Two different catalyst systems are identified that show complementary scope and broad functional-group tolerance, and time-course data suggest the two methods follow different mechanisms. A NiBr2/terpyridine catalyst system with Zn as the reductant converts the aryl bromide into an aryl-zinc intermediate that undergoes in situ coupling with 2-chloropyridines, while a NiBr2/bipyridine catalyst system with tetrakis(dimethylamino)ethylene as the reductant uses FeBr2 and NaI as additives to achieve selective cross-coupling. 
    more » « less
  2. Sacrificial anodes composed of inexpensive metals such as Zn, Fe and Mg are widely used to support electrochemical nickel-catalyzed cross-electrophile coupling (XEC) reactions, in addition to other reductive electrochemical transformations. Such anodes are appealing because they provide a stable counter-electrode potential and typically avoid interference with the reductive chemistry. The present study outlines development of an electrochemical Ni-catalyzed XEC reaction that streamlines access to a key pharmaceutical intermediate. Metal ions derived from sacrificial anode oxidation, however, directly contribute to homocoupling and proto-dehalogenation side products that are commonly formed in chemical and electrochemical Ni-catalyzed XEC reactions. Use of a divided cell limits interference by the anode-derived metal ions and supports high product yield with negligible side product formation, introducing a strategy to overcome one of the main limitations of Ni-catalyzed XEC. 
    more » « less
  3. Zinc and manganese are widely used as reductants in synthetic methods, such as nickel-catalyzed cross-electrophile coupling (XEC) reactions, but their redox potentials are unknown in organic solvents. Here, we show how open-circuit potential measurements may be used to determine the thermodynamic potentials of Zn and Mn in different organic solvents and in the presence of common reaction additives. The impact of these Zn and Mn potentials is analyzed for a pair of Ni-catalyzed reactions, each showing a preference for one of the two reductants. Ni-catalyzed coupling of N-alkyl-2,4,6-triphenylpyridinium reagents (Katritzky salts) with aryl halides are then compared under chemical reaction conditions, using Zn or Mn reductants, and under electrochemical conditions performed at applied potentials corresponding to the Zn and Mn reduction potentials and at potentials optimized to achieve the maximum yield. The collective results illuminate the important role of reductant redox potential in Ni-catalyzed XEC reactions. 
    more » « less
  4. Abstract Photoredox nickel catalysis has emerged as a powerful strategy for cross-coupling reactions. Although the involvement of paramagnetic Ni(I)/Ni(III) species as active intermediates in the catalytic cycle has been proposed, a thorough spectroscopic investigation of these species is lacking. Herein, we report the tridentate pyridinophane ligandsRN3 that allow for detailed mechanistic studies of the photocatalytic C–O coupling reaction. The derived (RN3)Ni complexes are active catalysts under mild conditions and without an additional photocatalyst. We also provide direct evidence for the key steps involving paramagnetic Ni species in the proposed catalytic cycle: the oxidative addition of an aryl halide to a Ni(I) species, the ligand exchange/transmetalation at a Ni(III) center, and the C–O reductive elimination from a Ni(III) species. Overall, the present work suggests theRN3 ligands are a practical platform for mechanistic studies of Ni-catalyzed reactions and for the development of new catalytic applications. 
    more » « less
  5. Abstract Nickel‐catalyzed cross‐electrophile coupling (XEC) is an efficient method to form carbon‐carbon bonds and has become an important tool for building complex molecules. While XEC has most often used stoichiometric metal reductants, these transformations can also be driven electrochemically. Electrochemical XEC (eXEC) is attractive because it can increase the greenness of XEC and this potential has resulted in numerous advances in recent years. The focus of this review is on electrochemical, Ni‐catalyzed carbon‐carbon bond forming reactions reported since 2010 and is categorized by the type of anodic half reaction: sacrificial anode, sacrificial reductant, and convergent paired electrolysis. The key developments are highlighted and the need for more scalable options is discussed. 
    more » « less