skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Zinc and manganese redox potentials in organic solvents and their influence on nickel-catalysed cross-electrophile coupling
Zinc and manganese are widely used as reductants in synthetic methods, such as nickel-catalyzed cross-electrophile coupling (XEC) reactions, but their redox potentials are unknown in organic solvents. Here, we show how open-circuit potential measurements may be used to determine the thermodynamic potentials of Zn and Mn in different organic solvents and in the presence of common reaction additives. The impact of these Zn and Mn potentials is analyzed for a pair of Ni-catalyzed reactions, each showing a preference for one of the two reductants. Ni-catalyzed coupling of N-alkyl-2,4,6-triphenylpyridinium reagents (Katritzky salts) with aryl halides are then compared under chemical reaction conditions, using Zn or Mn reductants, and under electrochemical conditions performed at applied potentials corresponding to the Zn and Mn reduction potentials and at potentials optimized to achieve the maximum yield. The collective results illuminate the important role of reductant redox potential in Ni-catalyzed XEC reactions.  more » « less
Award ID(s):
2154698
PAR ID:
10600338
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Nature Chemistry
Volume:
16
Issue:
12
ISSN:
1755-4330
Page Range / eLocation ID:
2036 to 2043
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sacrificial anodes composed of inexpensive metals such as Zn, Fe and Mg are widely used to support electrochemical nickel-catalyzed cross-electrophile coupling (XEC) reactions, in addition to other reductive electrochemical transformations. Such anodes are appealing because they provide a stable counter-electrode potential and typically avoid interference with the reductive chemistry. The present study outlines development of an electrochemical Ni-catalyzed XEC reaction that streamlines access to a key pharmaceutical intermediate. Metal ions derived from sacrificial anode oxidation, however, directly contribute to homocoupling and proto-dehalogenation side products that are commonly formed in chemical and electrochemical Ni-catalyzed XEC reactions. Use of a divided cell limits interference by the anode-derived metal ions and supports high product yield with negligible side product formation, introducing a strategy to overcome one of the main limitations of Ni-catalyzed XEC. 
    more » « less
  2. Abstract Nickel‐catalyzed cross‐electrophile coupling (XEC) is an efficient method to form carbon‐carbon bonds and has become an important tool for building complex molecules. While XEC has most often used stoichiometric metal reductants, these transformations can also be driven electrochemically. Electrochemical XEC (eXEC) is attractive because it can increase the greenness of XEC and this potential has resulted in numerous advances in recent years. The focus of this review is on electrochemical, Ni‐catalyzed carbon‐carbon bond forming reactions reported since 2010 and is categorized by the type of anodic half reaction: sacrificial anode, sacrificial reductant, and convergent paired electrolysis. The key developments are highlighted and the need for more scalable options is discussed. 
    more » « less
  3. Nickel-catalyzed cross-electrophile coupling (XEC) reactions of (hetero)aryl electrophiles represent appealing alternatives to palladium-catalyzed methods for biaryl synthesis, but they often generate significant quantities of homocoupling and/or proto-dehalogenation side products. In this study, an informer library of heteroaryl chloride and aryl bromide coupling partners is used to identify Ni-catalyzed XEC conditions that access high selectivity for the cross-product when using equimolar quantities of the two substrates. Two different catalyst systems are identified that show complementary scope and broad functional-group tolerance, and time-course data suggest the two methods follow different mechanisms. A NiBr2/terpyridine catalyst system with Zn as the reductant converts the aryl bromide into an aryl-zinc intermediate that undergoes in situ coupling with 2-chloropyridines, while a NiBr2/bipyridine catalyst system with tetrakis(dimethylamino)ethylene as the reductant uses FeBr2 and NaI as additives to achieve selective cross-coupling. 
    more » « less
  4. NA (Ed.)
    Metal catalyzed carbon-carbon bond forming reactions have rapidly become one of the most effective tools in organic synthesis for the assembly of highly functionalized molecules. These reactions have typically been carried out under homogeneous reaction conditions, which require the use of ligands to solubilize the catalyst and broaden its window of reactivity. However, the use of these catalysts under homogeneous conditions has limited their commercial viability due to product contamination as a direct result of inability to effectively separate the catalyst from the reaction product. Ligand-free heterogeneous catalysis presents a promising option to address this problem as evidenced by the significant increase in research activity in this area. We have recently developed a simple, one-step method for the preparation nickel nanoparticles supported on multi-walled carbon nanotubes (Ni/MWCNTs) under mechanical shaking in a ball-mill. The preparation method is very fast and straightforward which does not require any chemicals, solvents, or additional ligands. The as-prepared nanoparticles demonstrated remarkable catalytic activities in Suzuki cross-coupling reactions of the functionalized aryl halides and phenylboronic acids in batch with high turnover number in a single catalytic reaction. Batch operations have several inherent limitations that include reproducibility, scalability, and reactor productivity. Continuous flow chemistry has been considered as an alternative approach in academic and industrial processes due to its efficient and innovative synthetic design. Due to the low level of leaching observed in batch reactions as well as remarkable recyclability, the Ni/MWCNTs nanoparticles demonstrated remarkable catalytic activity in Suzuki coupling reactions with a diverse range of functionalized aryl halides and phenyl boronic acids under continuous flow conditions. Further optimization of the method including the reaction time, temperature, required solvents, flow rate, and minimum residence time will be discussed in this presentation. 
    more » « less
  5. Photoredox catalysis has been prominent in many applications, including solar fuels, organic synthesis, and polymer chemistry. Photocatalytic activity directly depends on the photophysical and electrochemical properties of photocatalysts in both the ground state and excited state. Controlling those properties, therefore, is imperative to achieve the desired photocatalytic activity. Redox potential is one important factor that impacts both the thermodynamic and kinetic aspects of key elementary steps in photoredox catalysis. In many challenging reactions in organic synthesis, high redox potentials of the substrates hamper the reaction, leading to slow conversion. Thus, the development of photocatalysts with extreme redox potentials, accompanied by potent reducing or oxidizing power, is required to execute high-yielding thermodynamically demanding reactions. In this review, we will introduce strategies for accessing extreme redox potentials in photocatalytic transformations. These include molecular design strategies for preparing photosensitizers that are exceptionally strong ground-state or excited-state reductants or oxidants, highlighting both organic and metal-based photosensitizers. We also outline methodological approaches for accessing extreme redox potentials, using two-photon activation, or combined electrochemical/photochemical strategies to generate potent redox reagents from precursors that have milder potentials. 
    more » « less