skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Broadening Participation of Teachers in Computing: Examining Postsecondary Educational Experiences and Prospective Educators' CS Teaching Interests
Teacher shortages in K–12 computer science (CS) education negatively impact students’ access to CS courses, exposure to CS concepts, and interest in CS-related careers. To address CS teacher shortages, this study seeks to understand factors related to expressing a preference to teach CS among prospective teachers. The study team analyzed data from 27,700 prospective teacher applications accepted into the 2016–2020 Teach For America (TFA) corps (cohorts). The TFA corps is an alternative teacher development program that recruits and prepares participants to obtain their teaching certification while they work for at least two years in underserved communities on a temporary teaching license. Study results show that earning at least one postsecondary CS credit and majoring in CS are positively associated with these prospective teachers’ preference to teach CS. Findings indicate that among these accepted TFA applicants, a larger proportion of male applicants and racially minoritized applicants earned a postsecondary CS credit, majored in CS, and preferred to teach CS compared with female applicants and racially non-minoritized applicants. This study lays the foundation for future explorations of whether early exposure to CS could increase prospective teachers’ interest in teaching CS and reduce CS teacher shortages in K-12 settings. Findings from this study can also serve as a precursor to developing policies that result in a CS teacher workforce that is more representative of students enrolled in K-12 public schools.  more » « less
Award ID(s):
1837394
PAR ID:
10492845
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Journal of Computer Science Integration
Date Published:
Journal Name:
Journal of Computer Science Integration
Volume:
7
Issue:
1
ISSN:
2574-108X
Subject(s) / Keyword(s):
CS education equity teacher workforce K-12 teachers teacher preparation teacher shortage
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This research WIP paper describes computer science undergraduate students’ perceptions of career pathways and becoming K-12 computer science teachers. Computer science (CS) education has become critical with the rapid pace of technological development to better prepare students for national technology and economic competitiveness and security. According to Code.org, 57.5% of U.S. public high schools offer foundational computer science courses in 2023; unfortunately, access to the courses remains unequal and maintains wide disparities by race/ethnicity and social class. For instance, Hispanics are 1.4 times less likely to take foundational CS courses compared to their white and Asian peers, and students with low socio-economic status are underrepresented in the overall population. The shortage of CS teachers is one of the significant barriers to why minoritized groups of students do not have equal access to learning CS. Various programmatic efforts have been implemented to address the gap, including the recruitment of undergraduate students who will earn bachelor’s degrees in computing. This approach has been considered innovative in building a new pipeline for producing highly qualified CS teachers with the ability to transform computing education and the CS teacher community rather than training in-service teachers certified in other disciplines to receive credentials to teach CS. Studies report that CS degree recipients opt for industry roles and exhibit disinterest in alternative career pathways, such as teaching because they perceive this profession as having lower salaries and unfavorable aspects associated with the job. However, we need a more prosperous and in-depth understanding of why CS degree holders consider industry jobs of greater importance rather than teaching, which would reduce the disparity in K-12 computing education. As a first attempt to better understand the perceptions of computer science undergraduate students at an Hispanic-Serving Institution (HSI), we collected qualitative data (i.e., student artifacts) in a course offered in the computer science department. Driven by social cognitive career and FIT-choice theory, our findings from the preliminary analysis indicate that CS undergraduate students at an HSI acknowledged the importance of K-12 CS teachers in their communities, but at the same time, they have more concerns about the underpayment and undervaluation of the job. They have shown a conflict between their perceptions of teaching CS and their own career aspirations as CS teachers. These preliminary findings draw attention to the importance of uncovering common career plans among CS undergraduate students. 
    more » « less
  2. This research WIP paper describes computer science undergraduate students’ perceptions of career pathways and becoming K-12 computer science teachers. Computer science (CS) education has become critical with the rapid pace of technological development to better prepare students for national technology and economic competitiveness and security. According to Code.org, 57.5% of U.S. public high schools offer foundational computer science courses in 2023; unfortunately, access to the courses remains unequal and maintains wide disparities by race/ethnicity and social class. For instance, Hispanics are 1.4 times less likely to take foundational CS courses compared to their white and Asian peers, and students with low socio-economic status are underrepresented in the overall population. The shortage of CS teachers is one of the significant barriers to why minoritized groups of students do not have equal access to learning CS. Various programmatic efforts have been implemented to address the gap, including the recruitment of undergraduate students who will earn bachelor’s degrees in computing. This approach has been considered innovative in building a new pipeline for producing highly qualified CS teachers with the ability to transform computing education and the CS teacher community rather than training in-service teachers certified in other disciplines to receive credentials to teach CS. Studies report that CS degree recipients opt for industry roles and exhibit disinterest in alternative career pathways, such as teaching because they perceive this profession as having lower salaries and unfavorable aspects associated with the job. However, we need a more prosperous and in-depth understanding of why CS degree holders consider industry jobs of greater importance rather than teaching, which would reduce the disparity in K-12 computing education. As a first attempt to better understand the perceptions of computer science undergraduate students at an Hispanic-Serving Institution (HSI), we collected qualitative data (i.e., student artifacts) in a course offered in the computer science department. Driven by social cognitive career and FIT-choice theory, our findings from the preliminary analysis indicate that CS undergraduate students at an HSI acknowledged the importance of K-12 CS teachers in their communities, but at the same time, they have more concerns about the underpayment and undervaluation of the job. They have shown a conflict between their perceptions of teaching CS and their own career aspirations as CS teachers. These preliminary findings draw attention to the importance of uncovering common career plans among CS undergraduate students. 
    more » « less
  3. Although engineering is becoming increasingly important in K-12 education, previous research has demonstrated that, similar to the general population, K-12 teachers typically hold inaccurate perceptions of engineering, which affects their ability to provide students with relevant engineering experiences. Studies have shown that K-12 teachers often confuse the work of engineers with that of automotive mechanics or construction workers or assume that engineering is only for “super smart” students who are naturally gifted or who come from higher socioeconomic backgrounds. This indicates that many teachers do not understand the nature of engineering work and have stereotypical attitudes about who is qualified to be an engineer. These inaccurate perceptions of engineering among K-12 teachers may influence the way that teachers introduce engineering practices to their students and make connections between engineering and the other STEM disciplines. In addition, teacher self-efficacy has been shown to not only influence teachers’ willingness to engage with a particular topic, but also to have a significant influence on the motivation and achievement of their students. Research also indicates that high-efficacy teachers typically exert more effort and utilize more effective instructional strategies than low-efficacy teachers. The goal of this study was to examine the perceptions that pre-service K-12 teachers hold about engineers and engineering, and to further explore how those perceptions influence their self-efficacy with teaching engineering and beliefs about what skills and resources are necessary to teach engineering in a K-12 classroom. We first developed a survey instrument that included questions taken from two previously published instruments: the Design, Engineering, and Technology survey and the Teaching Engineering Self-Efficacy Scale for K-12 Teachers. Forty-two students enrolled in an undergraduate program at {Name Redacted} in which students simultaneously pursue a bachelor’s degree in a STEM field and K-12 teacher licensure completed the survey. Based on survey responses, six participants, representing a range of self-efficacy scores and majors, were selected to participate in interviews. In these interviews, participants were asked questions about their perceptions of engineers and were also asked to sort a list of characteristics based on whether they applied to engineers or not. Finally, interview participants were asked questions about their confidence in their ability to teach engineering and about what skills and/or resources they would require to be able to teach engineering in their future classrooms. The results of this study indicated that the participants’ perceptions of engineering and engineers did impact their self-efficacy with teaching engineering and their beliefs about how well engineering could be incorporated into other STEM subjects. A recurring theme among participants with low self-efficacy was a lack of exposure to engineering and inaccurate perceptions of the nature of engineering work. These pre-service teachers felt that they would not be able to teach engineering to K-12 students because they did not personally have much exposure to engineering or knowledge about engineering work. In future work, we will investigate how providing pre-service teachers with training in engineering education and exposure to engineers and engineering students impacts both their perceptions of engineering and self-efficacy with teaching engineering. 
    more » « less
  4. Problem. Currently, state- and district-level policies in the United States call for teachers to be qualified to teach computing in K-12 classrooms. Recognizing that equity-focused practices are key to reaching all students in computing and leveraging a researcher-practitioner partnership (RPP), we piloted an intervention designed to provide one-on-one coaching to teachers. Research Question. Our research questions for this project were: 1) What impact does CS coaching have on teacher capacity to implement equitable teaching practices? and 2) What, if any, changes to teacher practice are sustained during and after the CS coaching process? Methodology. Our mixed-methods study leveraged three primary forms of data from teachers who were coached (coachees) and teachers providing coaching (coaches). These included pre- and post-surveys, coaching logs, and self-reflection checklists. Findings. Participants reported use of high-impact instructional design and classroom practices increased significantly from pre- to post-intervention. Their abilities to discuss topics of identity and plan activities that use evidence-based, CS-specific teaching strategies saw the most dramatic increase from pre- to post-intervention. Implications. Coaching may be an impactful way to develop teacher’s use of equitable teaching practices. 
    more » « less
  5. Amongst efforts to realize computer science (CS) for all, recent critiques of racially biased technologies have emerged (e.g., facial recognition software), revealing a need to critically examine the interaction between computing solutions and societal factors. Yet within efforts to introduce K-12 students to such topics, studies examining teachers' learning of critical computing are rare. To understand how teachers learn to integrate societal issues within computing education, we analyzed video of a teacher professional development (PD) session with experienced computing teachers. Highlighting three particular episodes of conversation during PD, our analysis revealed how personal and classroom experiences—from making a sensor-based project to drawing on family and teaching experiences—tethered teachers’ weaving of societal and technical aspects of CS and enabled reflections on their learning and pedagogy. We discuss the need for future PD efforts to build on teachers’ experiences, draw in diverse teacher voices, and develop politicized trust among teachers. 
    more » « less