Data centers and clouds are increasingly offering low-cost computational resources in the form of transient virtual machines. Whenever demand for computational resources exceeds their availability, transient resources can reclaimed by preempting the transient VMs. Conventionally, these transient VMs are used by low-priority applications that can tolerate the disruption caused by preemptions. In this paper we propose an alternative approach for reclaiming resources, called resource deflation. Resource deflation allows applications to dynamically shrink (and expand) in response to resource pressure, instead of being preempted outright. Deflatable VMs allow applications to continue running even under resource pressure, and increase the utility of low-priority transient resources. Deflation uses a dynamic, multi-level cascading reclamation technique that allows applications, operating systems, and hypervisors to implement their own policies for handling resource pressure. For distributed data processing, machine learning, and deep neural network training, our multi-level approach reduces the performance degradation by up to 2x compared to existing preemption-based approaches. When deflatable VMs are deployed on a cluster, our policies allow up to 1.6x utilization without the risk of preemption.
more »
« less
Covering Dynamic Demand with Multi-Resource Heterogeneous Teams
In this work, we consider a team of heterogeneous robots equipped with various types and quantities of resources, and tasked with supplying these resources to multiple dynamic demand locations. We present an adaptive control policy that enables robots to serve a dynamic demand: we allow demand to deplete as robots supply resources, and we allow demand injection and movement of demand locations. We show that the demand is input-to-state stable (ISS) under our proposed resource dynamics, and thus the robots can drive the demand to a steady state. Finally, we present simulations and hardware experiments to demonstrate our approach, and demonstrate the benefits of coverage over a persistent monitoring approach.
more »
« less
- Award ID(s):
- 2235622
- PAR ID:
- 10492869
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 978-1-6654-9190-7
- Page Range / eLocation ID:
- 11127 to 11134
- Format(s):
- Medium: X
- Location:
- Detroit, MI, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Multisection continuum arms are bio-inspired manipulators that combine compliance, payload, dexterity, and safety to serve as co-robots in human-robot collaborative domains. Their hyper redundancy and complex kinematics, however, pose many challenges when performing path planning, especially in dynamic environments. In this paper, we present a W-Space based Rapidly Exploring Random Trees * path planner for multisection continuum arm robots in dynamic environments. The proposed planner improves the existing state-of-art planners in terms of computation time and the success rate, while removing the need for offline computation. On average, the computation time of our approach is below 2 seconds, and its average success rate is around 70 %. The computation time of the proposed planner significantly improves that of the state-of-the-art planner by roughly a factor of 20, making the former suitable for real-time applications. Moreover, for application domains where the obstacle motion is not very predictable (e.g., human obstacles), the proposed planner significantly improves the success rate of state-of-the-art planners by nearly 50 %. Lastly, we demonstrate the feasibility of several generated trajectories by replicating the motion on a physical prototype arm.more » « less
-
Workflow management systems (WMSs) are commonly used to organize/automate sequences of tasks as workflows to accelerate scientific discoveries. During complex workflow modeling, a local interactive workflow environment is desirable, as users usually rely on their rich, local environments for fast prototyping and refinements before they consider using more powerful computing resources. However, existing WMSs do not simultaneously support local interactive workflow environments and HPC resources. In this paper, we present an on-demand access mechanism to remote HPC resources from desktop/laptopbased workflow management software to compose, monitor and analyze scientific workflows in the CyberWater project. Cyber- Water is an open-data and open-modeling software framework for environmental and water communities. In this work, we extend the open-model, open-data design of CyberWater with on-demand HPC accessing capacity. In particular, we design and implement the LaunchAgent library, which can be integrated into the local desktop environment to allow on-demand usage of remote resources for hydrology-related workflows. LaunchAgent manages authentication to remote resources, prepares the computationally-intensive or data-intensive tasks as batch jobs, submits jobs to remote resources, and monitors the quality of services for the users. LaunchAgent interacts seamlessly with other existing components in CyberWater, which is now able to provide advantages of both feature-rich desktop software experience and increased computation power through on-demand HPC/Cloud usage. In our evaluations, we demonstrate how a hydrology workflow that consists of both local and remote tasks can be constructed and show that the added on-demand HPC/Cloud usage helps speeding up hydrology workflows while allowing intuitive workflow configurations and execution using a desktop graphical user interface.more » « less
-
Collaborative localization is an essential capability for a team of robots such as connected vehicles to collaboratively estimate object locations from multiple perspectives with reliant cooperation. To enable collaborative localization, four key challenges must be addressed, including modeling complex relationships between observed objects, fusing observations from an arbitrary number of collaborating robots, quantifying localization uncertainty, and addressing latency of robot communications. In this paper, we introduce a novel approach that integrates uncertainty-aware spatiotemporal graph learning and model-based state estimation for a team of robots to collaboratively localize objects. Specifically, we introduce a new uncertainty-aware graph learning model that learns spatiotemporal graphs to represent historical motions of the objects observed by each robot over time and provides uncertainties in object localization. Moreover, we propose a novel method for integrated learning and model-based state estimation, which fuses asynchronous observations obtained from an arbitrary number of robots for collaborative localization. We evaluate our approach in two collaborative object localization scenarios in simulations and on real robots. Experimental results show that our approach outperforms previous methods and achieves state-of-the-art performance on asynchronous collaborative localization.more » « less
-
The growing demand of industrial, automotive and service robots presents a challenge to the centralized Cloud Robotics model in terms of privacy, security, latency, bandwidth, and reliability. In this paper, we present a ‘Fog Robotics’ approach to deep robot learning that distributes compute, storage and networking resources between the Cloud and the Edge in a federated manner. Deep models are trained on non-private (public) synthetic images in the Cloud; the models are adapted to the private real images of the environment at the Edge within a trusted network and subsequently, deployed as a service for low-latency and secure inference/prediction for other robots in the network. We apply this approach to surface decluttering, where a mobile robot picks and sorts objects from a cluttered floor by learning a deep object recognition and a grasp planning model. Experiments suggest that Fog Robotics can improve performance by sim-to-real domain adaptation in comparison to exclusively using Cloud or Edge resources, while reducing the inference cycle time by 4 to successfully declutter 86% of objects over 213 attempts.more » « less
An official website of the United States government

