skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Physically Assistive Robots: A Systematic Review of Mobile and Manipulator Robots That Physically Assist People with Disabilities
More than 1 billion people in the world are estimated to experience significant disability. These disabilities can impact people's ability to independently conduct activities of daily living, including ambulating, eating, dressing, taking care of personal hygiene, and more. Mobile and manipulator robots, which can move about human environments and physically interact with objects and people, have the potential to assist people with disabilities in activities of daily living. Although the vision of physically assistive robots has motivated research across subfields of robotics for decades, such robots have only recently become feasible in terms of capabilities, safety, and price. More and more research involves end-to-end robotic systems that interact with people with disabilities in real-world settings. In this article, we survey papers about physically assistive robots intended for people with disabilities from top conferences and journals in robotics, human–computer interactions, and accessible technology, to identify the general trends and research methodologies. We then dive into three specific research themes—interaction interfaces, levels of autonomy, and adaptation—and present frameworks for how these themes manifest across physically assistive robot research. We conclude with directions for future research.  more » « less
Award ID(s):
1924435
PAR ID:
10492877
Author(s) / Creator(s):
; ;
Publisher / Repository:
Annual Reviews
Date Published:
Journal Name:
Annual Review of Control, Robotics, and Autonomous Systems
Volume:
7
Issue:
1
ISSN:
2573-5144
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Over 1 billion people worldwide are estimated to experience significant disability, which impacts their ability to independently conduct activities of daily living (ADLs) such as eating, ambulating, and dressing. Physically assistive robots (PARs) have emerged as a promising technology to help people with disabilities conduct ADLs, thereby restoring independence and reducing caregiver burden. However, despite decades of research on PARs, deployments of them in end-users’ homes are still few and far between. This thesis focuses on robot-assisted feeding as a case study for how we can achieve in-home deployments of PARs. Our ultimate goal is to develop a robot-assisted feeding system that enables any user, in any environment, to feed themselves a meal of their choice in a way that aligns with their preferences. We collaborate closely with 2 community researchers with motor impairments to design, implement, and evaluate a robot-assisted feeding system that makes progress towards this ultimate goal. Specifically, this thesis presents the following work: 1. A systematic survey of research on PARs, identifying key themes and trends; 2. A formative study investigating the meal-related needs of people with motor impairments and their priorities regarding the design of robot-assisted feeding systems; 3. An action schema and unsupervised learning pipeline that uses human data to learn representative actions a robot can use acquire diverse bites of food; and 4. The key system design considerations, both software and hardware, that enabled us to develop a robot-assisted feeding system to deploy in users’ homes. We evaluate the system with two studies: (1) an out-of-lab study where 5 participants and 1 community researcher use the robot to feed themselves a meal of their choice in a cafeteria, conference room, or office; and (2) a 5-day, in-home deployment where 1 community researcher uses the robot to feed himself 10 meals across various spatial, social, and activity contexts. The studies reveal promising results in terms of the usability and functionality of the system, as well as key directions for future work that are necessary to achieve the aforementioned ultimate goal. We present key lessons learned regarding in-home deployments of PARs: (1) spatial contexts are numerous, customizability lets users adapt to them; (2) off-nominals will arise, variable autonomy lets users overcome them; (3) assistive robots’ benefits depend on context; and (4) work with end-users and stakeholders. 
    more » « less
  2. An important component for the effective collaboration of humans with robots is the compatibility of their movements, especially when humans physically collaborate with a robot partner. Following previous findings that humans interact more seamlessly with a robot that moves with humanlike or biological velocity profiles, this study examined whether humans can adapt to a robot that violates human signatures. The specific focus was on the role of extensive practice and realtime augmented feedback. Six groups of participants physically tracked a robot tracing an ellipse with profiles where velocity scaled with the curvature of the path in biological and nonbiological ways, while instructed to minimize the interaction force with the robot. Three of the 6 groups received real-time visual feedback about their force error. Results showed that with 3 daily practice sessions, when given feedback about their force errors, humans could decrease their interaction forces when the robot’s trajectory violated human-like velocity patterns. Conversely, when augmented feedback was not provided, there were no improvements despite this extensive practice. The biological profile showed no improvements, even with feedback, indicating that the (non-zero) force had already reached a floor level. These findings highlight the importance of biological robot trajectories and augmented feedback to guide humans to adapt to non-biological movements in physical human-robot interaction. These results have implications on various fields of robotics, such as surgical applications and collaborative robots for industry. 
    more » « less
  3. Indoor robots hold the promise of automatically handling mundane daily tasks, helping to improve access for people with disabilities, and providing on-demand access to remote physical environments. Unfortunately, the ability to understand never-before-seen objects in scenes where new items may be added (e.g., purchased) or altered (e.g., damaged) on a regular basis remains an open challenge for robotics. In this paper, we introduce EURECA, a mixed-initiative system that leverages online crowds of human contributors to help robots robustly identify 3D point cloud segments corresponding to user-referenced objects in near real-time. EURECA allows robots to understand multi-object 3D scenes on-the-fly (in ∼40 seconds) by providing groups of non-expert crowd workers with intelligent tools that can segment objects more quickly (∼70% faster) and more accurately than individuals. More broadly, EURECA introduces the first real-time crowdsourcing tool that addresses the challenge of learning about new objects in real-world settings, creating a new source of data for training robots online, as well as a platform for studying mixed-initiative crowdsourcing workflows for understanding 3D scenes. 
    more » « less
  4. Not AvailablePeople with cognitive disabilities may experience challenges in consistently performing daily activities because they skip steps, struggle to track progress, or lack the motivation to complete them. These challenges are often along a range; people need assistive devices customized to their specific needs. However, existing assistive technologies, like prompting systems, lack the capabilities to customize support for diverse needs. With the advent of smart home devices, there are opportunities to design prompting systems that support diverse accessibility and motivational needs, thereby supporting the regular practice of daily activities. To understand design factors for such devices, we interviewed adults with cognitive disabilities, parents, and caregivers. Our participants described their needs for future prompting systems, including structuring tasks, supporting motivation, and introducing community support. This paper presents insights and design suggestions for context-aware assistive technologies that could help people with cognitive disabilities regularly perform everyday activities. 
    more » « less
  5. Assistive mobile robots can play an important role in supporting individuals with disabilities. While the field of robot control interfaces for individuals with disabilities is growing, there is little work done on such systems for children end users specifically. Accordingly, we pursued the design of an adapted robot control interface for use in child pediatric occupational therapy (OT). Our target end user, a nine-year-old child with cerebral palsy, leveraged the interface to perform instrumental activities of daily living (e.g., play) with a modern mobile manipulator. We used an iterative design process to adjust and improve the interface via input from the participant’s caregivers and occupational therapist, as well as objective participant performance data. Furthermore, we tested the participant’s ability to utilize our interface by creating two testing cases: a control case (in which our participant performed standard ALD/IADL tasks) and an experimental case (in which our participant performed ADL/IADL practice activities more tailored toward the child). Key insights during the process included the need for sensitivity to taking up space on the child user’s existing power wheelchair, the advantages of integrating technologies familiar to the child (e.g., gaming controls, iPads) in our system design, and the potential value of integrating playful mischief (including playful interactions between the child, their caregivers, and their clinicians) as a part of the playbook for pediatric OT. This work can serve to inform and augment new OT strategies for the marginalized population of young children with disabilities. 
    more » « less