Education plays a critical role in the fight against climate change, offering educators an opportunity to inspire and empower students to take meaningful climate action. This Perspective explores how Action for Climate Empowerment (ACE) can be integrated into chemistry and environmental science education through a combination of art−science projects, community-based learning (CBL), and sustainability outreach. By implementing equitable and empowering pedagogies, such as CBL and creative expression through art, we can inspire empathy and care for planet Earth. This article provides practical examples of using visual exploration tools and sustainability-focused STEM outreach, which includes projects on bioplastics, algae biodiesel, and DNA nanotechnology. These projects help students understand how chemistry can contribute to solutions for climate change and environmental justice. By fostering creativity, empathy, and collaboration, educators can create impactful learning experiences that equip students with the knowledge, skills, and motivation to take climate action. Through authentic scientific research projects centered on sustainability, education becomes a means of empowerment and liberation, inspiring students to advocate for the environment as they imagine and build a sustainable future.
more »
« less
Heliophysics Science Community Contributions to Addressing Climate Change
Given the existential threat of climate change, we urge the heliophysics scientific community to consider ways in which we might further contribute to global efforts to address climate change. Whole atmosphere studies reveal that climate change processes impact even the uppermost regions of the atmosphere. The heliophysics research community now has models spanning the surface through the upper thermosphere and a diversity of observational datasets of the middle and upper atmosphere that span multiple decades. These studies indicate that the middle and upper atmosphere provide multiple vertical footprints for climate change and thus can contribute to an understanding of whole atmosphere climate change processes in the complex atmosphereland- ocean system. This white paper outlines recommendations for expansion of long-term data sets; simulations of climate with whole atmosphere models; engagement in collaborations with the tropospheric research community; and exploration of the possibility of heliophysics contributions to climate assessment efforts. Additionally, we recommend education and outreach efforts to help members of the wider community become more knowledgeable about climate change; support for efforts to increase the diversity of the heliophysics science community; support for international collaborations, and climate mitigation measures that our science community can implement to reduce greenhouse gas emissions from our research, education, and outreach activities.
more »
« less
- Award ID(s):
- 2050072
- PAR ID:
- 10493134
- Publisher / Repository:
- Bulletin American Astronomical Society
- Date Published:
- Journal Name:
- Bulletin American Astronomical Society
- ISSN:
- 0002-7537
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This perspective article discusses the knowledge gaps and open questions regarding the solar and interplanetary drivers of space weather conditions experienced at Mars during active and quiescent solar periods, and the need for continuous, routine observations to address them. For both advancing science and as part of the strategic planning for human exploration at Mars by the late 2030s, now is the time to consider a network of upstream space weather monitors at Mars. Our main recommendations for the heliophysics community are the following: 1. Support the advancement for understanding heliophysics and space weather science at ∼1.5 AU and continue the support of planetary science payloads and missions that provide such measurements. 2. Prioritize an upstream Mars L1 monitor and/or areostationary orbiters for providing dedicated, continuous observations of solar activity and interplanetary conditions at ∼1.5 AU. 3. Establish new or support existing 1) joint efforts between federal agencies and their divisions and 2) international collaborations to carry out #1 and #2.more » « less
-
ABSTRACT Because unmanned aircraft systems (UAS) offer new perspectives on the atmosphere, their use in atmospheric science is expanding rapidly. In support of this growth, the International Society for Atmospheric Research Using Remotely-Piloted Aircraft (ISARRA) has been developed and has convened annual meetings and “flight weeks.” The 2018 flight week, dubbed the Lower Atmospheric Profiling Studies at Elevation–A Remotely-Piloted Aircraft Team Experiment (LAPSE-RATE), involved a 1-week deployment to Colorado’s San Luis Valley. Between 14 and 20 July 2018 over 100 students, scientists, engineers, pilots, and outreach coordinators conducted an intensive field operation using unmanned aircraft and ground-based assets to develop datasets, community, and capabilities. In addition to a coordinated “Community Day” which offered a chance for groups to share their aircraft and science with the San Luis Valley community, LAPSE-RATE participants conducted nearly 1,300 research flights totaling over 250 flight hours. The measurements collected have been used to advance capabilities (instrumentation, platforms, sampling techniques, and modeling tools), conduct a detailed system intercomparison study, develop new collaborations, and foster community support for the use of UAS in atmospheric science.more » « less
-
Ground-based magnetometers used to measure magnetic fields on the Earth’s surface (B) have played a central role in the development of Heliophysics research for more than a century. These versatile instruments have been adapted to study everything from polar cap dynamics to the equatorial electrojet, from solar wind-magnetosphere-ionosphere coupling to real-time monitoring of space weather impacts on power grids. Due to their low costs and relatively straightforward operational procedures, these instruments have been deployed in large numbers in support of Heliophysics education and citizen science activities. They are also widely used in Heliophysics research internationally and more broadly in the geosciences, lending themselves to international and interdisciplinary collaborations; for example, ground-based electrometers collocated with magnetometers provide important information on the inductive coupling of external magnetic fields to the Earth’s interior through the induced electric field (E). The purpose of this white paper is to (1) summarize present ground-based magnetometer infrastructure, with a focus on US-based activities, (2) summarize research that is needed to improve our understanding of the causes and consequences of B variations, (3) describe the infrastructure and policies needed to support this research and improve space weather models and nowcasts/forecasts. We emphasize a strategic shift to proactively identify operational efficiencies and engage all stakeholders who need B and E to work together to intelligently design new coverage and instrumentation requirements.more » « less
-
Ground-based magnetometers used to measure magnetic fields on the Earth’s surface (B) have played a central role in the development of Heliophysics research for more than a century. These versatile instruments have been adapted to study everything from polar cap dynamics to the equatorial electrojet, from solar wind-magnetosphere-ionosphere coupling to real-time monitoring of space weather impacts on power grids. Due to their low costs and relatively straightforward operational procedures, these instruments have been deployed in large numbers in support of Heliophysics education and citizen science activities. They are also widely used in Heliophysics research internationally and more broadly in the geosciences, lending themselves to international and interdisciplinary collaborations; for example, ground-based electrometers collocated with magnetometers provide important information on the inductive coupling of external magnetic fields to the Earth’s interior through the induced electric field (E). The purpose of this white paper is to (1) summarize present ground-based magnetometer infrastructure, with a focus on US-based activities, (2) summarize research that is needed to improve our understanding of the causes and consequences of B variations, (3) describe the infrastructure and policies needed to support this research and improve space weather models and nowcasts/forecasts. We emphasize a strategic shift to proactively identify operational efficiencies and engage all stakeholders who need B and E to work together to intelligently design new coverage and instrumentation requirements.more » « less
An official website of the United States government

