Depth profiles of water column chemical and physical properties were assessed with seasonal-scale frequency from four lakes in the Itasca State Park from 2006-2009 and from 2019-2023. The data was used to assess the mixing status and major geochemical constituents within the lakes. Several parameters were routinely measured with deployable probes at meter or sub-meter resolution at the deepest location in each lake. Water samples were also collected for laboratory analysis. Bathymetry data collected in 2022 is supplied as rasters.
more »
« less
North Temperate Lakes LTER: Physical and Chemical Limnology of Lake Kegonsa and Lake Waubesa 1994 - current
Physical and chemicals parameters of two Madison-area lakes in the Yahara chain not included as core NTL-LTER study lakes. Parameters include intermittently sampled water temperature, dissolved oxygen, ph, total alkalinity, chloride and sulfate. Nutrient data has been collected since 2015. Number of sites: 2.
more »
« less
- Award ID(s):
- 2025982
- PAR ID:
- 10493141
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The rapid climate warming is affecting the Arctic which is rich in aquatic systems. As a result of permafrost thaw, thermokarst lakes and ponds are either shrinking due to lake drainage or expanding due to lake shore erosion. This process in turn mobilizes organic carbon, which is released by permafrost deposits and active layer material that slips into the lake. In this study, we combine hydrochemical measurements and remote sensing data to analyze the influence of lake change processes, especially lake growth, on lake hydrochemical parameters such as DOC, EC, pH as well as stable oxygen and hydrogen isotopes in the Arctic Coastal Plain. For our entire dataset of 97 water samples from 82 water bodies, we found significantly higher CH4 concentrations in lakes with a floating-ice regime and significantly higher DOC concentrations in lakes with a bedfast-ice regime. We show significantly lower CH4 concentrations in lagoons compared to lakes as a result of an effective CH4 oxidation that increased with a seawater connection. For our detailed lake sampling of two thermokarst lakes, we found a significant positive correlation for lake shore erosion and DOC for one of the lakes. Our detailed lake sampling approach indicates that the generally shallow thermokarst lakes are overall well mixed and that single hydrochemical samples are representative for the entire lake. Finally, our study confirms that DOC concentrations correlates with lake size, ecoregion type and underlying deposits.more » « less
-
Depth profiles of water column chemical and physical properties were assessed with seasonal-scale frequency from two meromictic lakes in the upper Midwest, U.S.A. from 2015 to 2019. Brownie Lake in Minneapolis, MN and Canyon Lake in the Huron Mountains of MI both contain elevated hypolimnetic dissolved iron (i.e. “ferruginous”). Several parameters were routinely measured with deployable probes at meter or sub-meter resolution at the deepest location in each lake. Water samples were also collected for laboratory analysis.more » « less
-
Nearly 25% of all lakes on earth are located at high latitudes. These lakes are formed by a combination of thermokarst, glacial, and geological processes. Evidence suggests that the origin of periglacial lake formation may be an important factor controlling the likelihood of lakes to drain. However, geospatial data regarding the spatial distribution of these dominant Arctic and subarctic lakes are limited or do not exist. Here, we use lake-specific morphological properties using the Arctic Digital Elevation Model (DEM) and Landsat imagery to develop a Thermokarst lake Settlement Index (TSI), which was used in combination with available geospatial datasets of glacier history and yedoma permafrost extent to classify Arctic and subarctic lakes into Thermokarst (non-yedoma), Yedoma, Glacial, and Maar lakes, respectively. This lake origin dataset was used to evaluate the influence of lake origin on drainage between 1985 and 2019 in northern Alaska. The lake origin map and lake drainage datasets were synthesized using five-year seamless Landsat ETM+ and OLI image composites. Nearly 35,000 lakes and their properties were characterized from Landsat mosaics using an object-based image analysis. Results indicate that the pattern of lake drainage varied by lake origin, and the proportion of lakes that completely drained (i.e., >60% area loss) between 1985 and 2019 in Thermokarst (non-yedoma), Yedoma, Glacial, and Maar lakes were 12.1, 9.5, 8.7, and 0.0%, respectively. The lakes most vulnerable to draining were small thermokarst (non-yedoma) lakes (12.7%) and large yedoma lakes (12.5%), while the most resilient were large and medium-sized glacial lakes (4.9 and 4.1%) and Maar lakes (0.0%). This analysis provides a simple remote sensing approach to estimate the spatial distribution of dominant lake origins across variable physiography and surficial geology, useful for discriminating between vulnerable versus resilient Arctic and subarctic lakes that are likely to change in warmer and wetter climates.more » « less
-
Abstract Whole lake residence time has been associated with various water quality parameters, including harmful algal blooms. Despite observations of spatial variability in commonly measured lake water quality parameters, little attention is given to the spatial variability of residence time in lakes. In this paper we use water age as a surrogate for residence time and we examine its spatial and temporal distribution in 10 bays of varying size in Lake George, New York (USA). Using a validated hydrodynamic model against observations of water temperature and water currents, and using simulated water age, we show that the average residence time in most of the bays is less than 3 days. Timeseries of bay‐average water age shows that it can sharply decrease within 1 day due to a strong wind event. The average spatial distribution is shown to be non‐uniform, with only a small section of the bottom layer of the bays having a substantially greater age, which may be more than 1 week in certain bays. Snapshots of water age transects indicate that strong wind events substantially change the vertical distribution of water age in some bays, even to the extent of inverting the distribution. The substantial decreases of water age in the bays were associated with the shallowing and deepening of the thermocline. Our results highlight how variations in water residence times within lakes could introduce substantial variation in water quality attributes. Whole lake residence times may serve as a poor proxy to understand the dynamics of water masses, especially in large and morphologically complex waterbodies.more » « less
An official website of the United States government
